roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""registry for commandline override options for config."""
from hydra.core.config_store import ConfigStore
from cosmos_predict1.tokenizer.training.configs.base.callback import BASIC_CALLBACKS
from cosmos_predict1.tokenizer.training.configs.base.checkpoint import CHECKPOINT_LOCAL
from cosmos_predict1.tokenizer.training.configs.base.data import DATALOADER_OPTIONS
from cosmos_predict1.tokenizer.training.configs.base.loss import VideoLossConfig
from cosmos_predict1.tokenizer.training.configs.base.metric import DiscreteTokenizerMetricConfig, MetricConfig
from cosmos_predict1.tokenizer.training.configs.base.net import (
CausalContinuousFactorizedVideoTokenizerConfig,
CausalDiscreteFactorizedVideoTokenizerConfig,
ContinuousImageTokenizerConfig,
DiscreteImageTokenizerConfig,
)
from cosmos_predict1.tokenizer.training.configs.base.optim import (
AdamWConfig,
FusedAdamConfig,
WarmupCosineLRConfig,
WarmupLRConfig,
)
def register_training_data(cs):
for data_source in ["mock", "hdvila"]:
for resolution in ["1080", "720", "480", "360", "256"]:
cs.store(
group="data_train",
package="dataloader_train",
name=f"{data_source}_video{resolution}", # `davis_video720`
node=DATALOADER_OPTIONS["video_loader_basic"](
dataset_name=f"{data_source}_video",
is_train=True,
resolution=resolution,
),
)
def register_val_data(cs):
for data_source in ["mock", "hdvila"]:
for resolution in ["1080", "720", "480", "360", "256"]:
cs.store(
group="data_val",
package="dataloader_val",
name=f"{data_source}_video{resolution}", # `davis_video720`
node=DATALOADER_OPTIONS["video_loader_basic"](
dataset_name=f"{data_source}_video",
is_train=False,
resolution=resolution,
),
)
def register_net(cs):
cs.store(
group="network", package="model.config.network", name="continuous_image", node=ContinuousImageTokenizerConfig
)
cs.store(group="network", package="model.config.network", name="discrete_image", node=DiscreteImageTokenizerConfig)
cs.store(
group="network",
package="model.config.network",
name="continuous_factorized_video",
node=CausalContinuousFactorizedVideoTokenizerConfig,
)
cs.store(
group="network",
package="model.config.network",
name="discrete_factorized_video",
node=CausalDiscreteFactorizedVideoTokenizerConfig,
)
def register_optim(cs):
cs.store(group="optimizer", package="optimizer", name="fused_adam", node=FusedAdamConfig)
cs.store(group="optimizer", package="optimizer", name="adamw", node=AdamWConfig)
def register_scheduler(cs):
cs.store(group="scheduler", package="scheduler", name="warmup", node=WarmupLRConfig)
cs.store(
group="scheduler",
package="scheduler",
name="warmup_cosine",
node=WarmupCosineLRConfig,
)
def register_loss(cs):
cs.store(group="loss", package="model.config.loss", name="video", node=VideoLossConfig)
def register_metric(cs):
cs.store(group="metric", package="model.config.metric", name="reconstruction", node=MetricConfig)
cs.store(group="metric", package="model.config.metric", name="code_usage", node=DiscreteTokenizerMetricConfig)
def register_checkpoint(cs):
cs.store(group="checkpoint", package="checkpoint", name="local", node=CHECKPOINT_LOCAL)
def register_callback(cs):
cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS)
def register_configs():
cs = ConfigStore.instance()
register_training_data(cs)
register_val_data(cs)
register_net(cs)
register_optim(cs)
register_scheduler(cs)
register_loss(cs)
register_metric(cs)
register_checkpoint(cs)
register_callback(cs)