Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""registry for commandline override options for config.""" | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.tokenizer.training.configs.base.callback import BASIC_CALLBACKS | |
from cosmos_predict1.tokenizer.training.configs.base.checkpoint import CHECKPOINT_LOCAL | |
from cosmos_predict1.tokenizer.training.configs.base.data import DATALOADER_OPTIONS | |
from cosmos_predict1.tokenizer.training.configs.base.loss import VideoLossConfig | |
from cosmos_predict1.tokenizer.training.configs.base.metric import DiscreteTokenizerMetricConfig, MetricConfig | |
from cosmos_predict1.tokenizer.training.configs.base.net import ( | |
CausalContinuousFactorizedVideoTokenizerConfig, | |
CausalDiscreteFactorizedVideoTokenizerConfig, | |
ContinuousImageTokenizerConfig, | |
DiscreteImageTokenizerConfig, | |
) | |
from cosmos_predict1.tokenizer.training.configs.base.optim import ( | |
AdamWConfig, | |
FusedAdamConfig, | |
WarmupCosineLRConfig, | |
WarmupLRConfig, | |
) | |
def register_training_data(cs): | |
for data_source in ["mock", "hdvila"]: | |
for resolution in ["1080", "720", "480", "360", "256"]: | |
cs.store( | |
group="data_train", | |
package="dataloader_train", | |
name=f"{data_source}_video{resolution}", # `davis_video720` | |
node=DATALOADER_OPTIONS["video_loader_basic"]( | |
dataset_name=f"{data_source}_video", | |
is_train=True, | |
resolution=resolution, | |
), | |
) | |
def register_val_data(cs): | |
for data_source in ["mock", "hdvila"]: | |
for resolution in ["1080", "720", "480", "360", "256"]: | |
cs.store( | |
group="data_val", | |
package="dataloader_val", | |
name=f"{data_source}_video{resolution}", # `davis_video720` | |
node=DATALOADER_OPTIONS["video_loader_basic"]( | |
dataset_name=f"{data_source}_video", | |
is_train=False, | |
resolution=resolution, | |
), | |
) | |
def register_net(cs): | |
cs.store( | |
group="network", package="model.config.network", name="continuous_image", node=ContinuousImageTokenizerConfig | |
) | |
cs.store(group="network", package="model.config.network", name="discrete_image", node=DiscreteImageTokenizerConfig) | |
cs.store( | |
group="network", | |
package="model.config.network", | |
name="continuous_factorized_video", | |
node=CausalContinuousFactorizedVideoTokenizerConfig, | |
) | |
cs.store( | |
group="network", | |
package="model.config.network", | |
name="discrete_factorized_video", | |
node=CausalDiscreteFactorizedVideoTokenizerConfig, | |
) | |
def register_optim(cs): | |
cs.store(group="optimizer", package="optimizer", name="fused_adam", node=FusedAdamConfig) | |
cs.store(group="optimizer", package="optimizer", name="adamw", node=AdamWConfig) | |
def register_scheduler(cs): | |
cs.store(group="scheduler", package="scheduler", name="warmup", node=WarmupLRConfig) | |
cs.store( | |
group="scheduler", | |
package="scheduler", | |
name="warmup_cosine", | |
node=WarmupCosineLRConfig, | |
) | |
def register_loss(cs): | |
cs.store(group="loss", package="model.config.loss", name="video", node=VideoLossConfig) | |
def register_metric(cs): | |
cs.store(group="metric", package="model.config.metric", name="reconstruction", node=MetricConfig) | |
cs.store(group="metric", package="model.config.metric", name="code_usage", node=DiscreteTokenizerMetricConfig) | |
def register_checkpoint(cs): | |
cs.store(group="checkpoint", package="checkpoint", name="local", node=CHECKPOINT_LOCAL) | |
def register_callback(cs): | |
cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS) | |
def register_configs(): | |
cs = ConfigStore.instance() | |
register_training_data(cs) | |
register_val_data(cs) | |
register_net(cs) | |
register_optim(cs) | |
register_scheduler(cs) | |
register_loss(cs) | |
register_metric(cs) | |
register_checkpoint(cs) | |
register_callback(cs) | |