roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for datasets creation."""
IMAGE_KEY = "images"
VIDEO_KEY = "video"
RECON_KEY = "reconstructions"
LATENT_KEY = "latent"
INPUT_KEY = "INPUT"
MASK_KEY = "loss_mask"
_SPATIAL_ALIGN = 16
import math
from typing import Union
import torch
from PIL import Image
# This is your "for short_side=720" map:
_ASPECT_SIZE_DICT = {
"1,1": (720, 720),
"4,3": (960, 720),
"3,4": (720, 960),
"16,9": (1280, 720),
"9,16": (720, 1280),
}
VIDEO_RES_SIZE_INFO: dict[str, tuple[int, int]] = {
"1080": { # 1080p doesn't have 1:1
"4,3": (1440, 1072),
"3,4": (1072, 1440),
"16,9": (1920, 1072),
"9,16": (1072, 1920),
},
"720": {"1,1": (720, 720), "4,3": (960, 720), "3,4": (720, 960), "16,9": (1280, 720), "9,16": (720, 1280)},
"480": {"1,1": (480, 480), "4,3": (640, 480), "3,4": (480, 640), "16,9": (854, 480), "9,16": (480, 854)},
"512": {"1,1": (512, 512), "4,3": (672, 512), "3,4": (512, 672), "16,9": (896, 512), "9,16": (512, 896)},
"360": {"1,1": (320, 320), "4,3": (416, 320), "3,4": (320, 416), "16,9": (544, 320), "9,16": (320, 544)},
"256": {"1,1": (256, 256), "4,3": (320, 256), "3,4": (256, 320), "16,9": (320, 192), "9,16": (192, 320)},
"128": { # Note that we set res lower than 256 to the same resolution as 256
"1,1": (256, 256),
"4,3": (320, 256),
"3,4": (256, 320),
"16,9": (448, 256),
"9,16": (256, 448),
},
}
VIDEO_VAL_CROP_SIZE_INFO: dict[str, tuple[int, int]] = {
"1080": { # 1080p doesn't have 1:1
"4,3": (1424, 1072),
"3,4": (1072, 1424),
"16,9": (1904, 1072),
"9,16": (1072, 1904),
"16,10": (1715, 1072),
},
"720": {"1,1": (704, 704), "4,3": (944, 704), "3,4": (704, 944), "16,9": (1264, 704), "9,16": (704, 1264)},
"480": {"1,1": (464, 464), "4,3": (624, 464), "3,4": (464, 624), "16,9": (848, 464), "9,16": (464, 848)},
"360": {"1,1": (320, 320), "4,3": (416, 320), "3,4": (320, 416), "16,9": (544, 320), "9,16": (320, 544)},
"512": {"1,1": (512, 512), "4,3": (672, 512), "3,4": (512, 672), "16,9": (896, 512), "9,16": (512, 896)},
"256": {"1,1": (256, 256), "4,3": (320, 256), "3,4": (256, 320), "16,9": (320, 192), "9,16": (192, 320)},
"128": { # Note that we set res lower than 256 to the same resolution as 256
"1,1": (256, 256),
"4,3": (320, 256),
"3,4": (256, 320),
"16,9": (320, 192),
"9,16": (192, 320),
"16,10": (410, 256),
},
}
def _pick_closest_aspect_ratio(height, width):
"""
Given a video's height and width, return the closest aspect ratio key
from aspect_dict.
"""
if height == 0:
return "1,1" # fallback if something weird, to avoid div by zero
actual_ratio = width / height
best_key = None
min_diff = math.inf
for ratio_key, (w_target, h_target) in _ASPECT_SIZE_DICT.items():
# for "16,9" -> (1280, 720), ratio is 1280/720 = 1.7777...
ratio = w_target / h_target
diff = abs(actual_ratio - ratio)
if diff < min_diff:
min_diff = diff
best_key = ratio_key
return best_key
def categorize_aspect_and_store(data_sample):
"""
data_sample: a dict with 'video' shaped [C,T,H,W].
We will determine the aspect ratio, pick the closest "1,1", "4,3", etc.,
and store a new dict entry.
"""
# Suppose 'video' is [C, T, H, W].
video_tensor = data_sample["video"]
H = video_tensor.shape[-2]
W = video_tensor.shape[-1]
data_sample["aspect_ratio"] = _pick_closest_aspect_ratio(H, W)
return data_sample
def get_crop_size_info(crop_sz: int = 128):
aspect_ratios = [(1, 1), (4, 3), (3, 4), (16, 9), (9, 16)]
crop_sizes = dict()
for aspect_ratio in aspect_ratios:
if aspect_ratio[0] < aspect_ratio[1]:
crop_h = crop_sz // _SPATIAL_ALIGN * _SPATIAL_ALIGN
crop_w = int(crop_h * aspect_ratio[0] / aspect_ratio[1] + 0.5)
crop_w = crop_w // _SPATIAL_ALIGN * _SPATIAL_ALIGN
else:
crop_w = crop_sz // _SPATIAL_ALIGN * _SPATIAL_ALIGN
crop_h = int(crop_w * aspect_ratio[1] / aspect_ratio[0] + 0.5)
crop_h = crop_h // _SPATIAL_ALIGN * _SPATIAL_ALIGN
key = f"{aspect_ratio[0]},{aspect_ratio[1]}"
crop_sizes.update({key: (crop_w, crop_h)})
return crop_sizes
def obtain_image_size(data_dict: dict, input_keys: list) -> tuple[int, int]:
r"""Function for obtaining the image size from the data dict.
Args:
data_dict (dict): Input data dict
input_keys (list): List of input keys
Returns:
width (int): Width of the input image
height (int): Height of the input image
"""
data1 = data_dict[input_keys[0]]
if isinstance(data1, Image.Image):
width, height = data1.size
elif isinstance(data1, torch.Tensor):
height, width = data1.size()[-2:]
else:
raise ValueError("data to random crop should be PIL Image or tensor")
return width, height
def obtain_augmentation_size(data_dict: dict, augmentor_cfg: dict) -> Union[int, tuple]:
r"""Function for obtaining size of the augmentation.
When dealing with multi-aspect ratio dataloaders, we need to
find the augmentation size from the aspect ratio of the data.
Args:
data_dict (dict): Input data dict
augmentor_cfg (dict): Augmentor config
Returns:
aug_size (int): Size of augmentation
"""
if "__url__" in data_dict and "aspect_ratio" in data_dict["__url__"].meta.opts:
aspect_ratio = data_dict["__url__"].meta.opts["aspect_ratio"]
aug_size = augmentor_cfg["size"][aspect_ratio]
else: # Non-webdataset format
aspect_ratio = data_dict["aspect_ratio"]
aug_size = augmentor_cfg["size"][aspect_ratio]
return aug_size