Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Implements the forward op for training, validation, and inference.""" | |
from typing import Any | |
import torch | |
from cosmos_predict1.tokenizer.training.datasets.utils import IMAGE_KEY, INPUT_KEY, MASK_KEY, RECON_KEY, VIDEO_KEY | |
from cosmos_predict1.tokenizer.training.losses.continuous import RECON_CONSISTENCY_KEY, VIDEO_CONSISTENCY_LOSS | |
from cosmos_predict1.utils import ema | |
from cosmos_predict1.utils.lazy_config import LazyDict, instantiate | |
from cosmos_predict1.utils.model import Model | |
PREDICTION = "prediction" | |
EMA_PREDICTION = "ema_prediction" | |
class TokenizerModel(Model): | |
def __init__(self, config) -> None: | |
super().__init__() | |
self.config = config | |
self.network = instantiate(config.network) | |
self.loss = instantiate(config.loss) | |
self.metric = instantiate(config.metric) | |
self.precision = getattr(torch, config.precision) | |
if self.config.ema.enabled: | |
self.ema = ema.EMAModelTracker( | |
self, | |
beta=self.config.ema.beta, | |
torch_compile_buffer_renaming=self.config.ema.torch_compile_buffer_renaming, | |
) | |
self.init_input_keys() | |
def init_input_keys(self): | |
self.image_key = IMAGE_KEY | |
self.video_key = VIDEO_KEY | |
def get_input_key(self, data_batch: dict[str, torch.Tensor]) -> str: | |
if self.image_key in data_batch: | |
return self.image_key | |
elif self.video_key in data_batch: | |
return self.video_key | |
else: | |
raise ValueError("Input key not found in data_batch.") | |
def init_optimizer_scheduler( | |
self, optimizer_config: LazyDict, scheduler_config: LazyDict | |
) -> tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LRScheduler]: | |
"""Creates the optimizer and scheduler for the network. | |
Args: | |
optimizer_config: The optimizer config for the net. | |
scheduler_config: The scheduler config for the net. | |
Returns: | |
optimizer (torch.optim.Optimizer): The net optimizer. | |
scheduler (torch.optim.lr_scheduler.LRScheduler): The net optimization scheduler. | |
""" | |
optimizer_config.params = self.network.parameters() | |
optimizer = instantiate(optimizer_config) | |
scheduler_config.optimizer = optimizer | |
scheduler = instantiate(scheduler_config) | |
return optimizer, scheduler | |
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None: | |
if self.config.ema.enabled: | |
self.ema.to(dtype=torch.float32) | |
self.network = self.network.to(dtype=self.precision, memory_format=memory_format) | |
self.loss = self.loss.to(dtype=self.precision, memory_format=memory_format) | |
def state_dict( | |
self, destination: dict[str, Any] = None, prefix: str = "", keep_vars: bool = False | |
) -> dict[str, Any]: | |
original_state_dict = super(TokenizerModel, self).state_dict(destination, prefix, keep_vars) | |
# Filter out '.loss' and 'ema.loss-' keys from the state dict. | |
filtered_state_dict = {k: v for k, v in original_state_dict.items() if not k.startswith("loss.")} | |
filtered_state_dict = {k: v for k, v in filtered_state_dict.items() if not k.startswith("ema.loss-")} | |
filtered_state_dict = { | |
k: v for k, v in filtered_state_dict.items() if not k.startswith("network.encoder.patcher") | |
} | |
filtered_state_dict = { | |
k: v for k, v in filtered_state_dict.items() if not k.startswith("network.decoder.unpatcher") | |
} | |
return filtered_state_dict | |
def load_state_dict(self, state_dict: Any, strict: bool = True) -> None: | |
own_state = self.state_dict() | |
filtered_state_dict = {k: v for k, v in state_dict.items() if k in own_state} | |
# Load only filtered state dict. | |
super(TokenizerModel, self).load_state_dict(filtered_state_dict, strict=False) | |
# If strict is True, ensure all parameters are loaded (except the excluded ones) | |
missing_keys = set(own_state.keys()) - set(filtered_state_dict.keys()) | |
if missing_keys and strict: | |
raise KeyError(f"Missing keys in state_dict: {missing_keys}") | |
def _on_before_network_forward(self, data_batch: dict[str, torch.Tensor]) -> None: | |
consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS] | |
if hasattr(consistency_loss, "enabled") and consistency_loss.enabled: | |
_input_key = self.get_input_key(data_batch) | |
if _input_key is self.video_key: | |
data_batch[_input_key] = consistency_loss.shuffle(data_batch[_input_key]) | |
return | |
def _on_after_network_forward( | |
self, data_batch: dict[str, torch.Tensor], output_batch: dict[str, torch.Tensor] | |
) -> None: | |
consistency_loss = self.loss.loss_modules[VIDEO_CONSISTENCY_LOSS] | |
if hasattr(consistency_loss, "enabled") and consistency_loss.enabled: | |
_input_key = self.get_input_key(data_batch) | |
if _input_key is self.video_key: | |
data_batch[_input_key] = consistency_loss.unshuffle(data_batch[_input_key]) | |
output_batch[RECON_CONSISTENCY_KEY] = torch.ones_like(output_batch[RECON_KEY]) * output_batch[RECON_KEY] | |
output_batch[RECON_KEY] = consistency_loss.unshuffle(output_batch[RECON_KEY]) | |
return | |
def _network_forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
# A callback proxy to modify the input before the forward pass. | |
self._on_before_network_forward(data_batch) | |
# Do the forward pass. | |
tensor_batch = data_batch[self.get_input_key(data_batch)] | |
output_batch = self.network(tensor_batch) | |
output_batch = output_batch if self.network.training else output_batch._asdict() | |
# A callback proxy to modify the output after the forward pass. | |
self._on_after_network_forward(data_batch, output_batch) | |
return output_batch | |
def training_step( | |
self, | |
data_batch: dict[str, torch.Tensor], | |
iteration: int, | |
) -> tuple[dict[str, torch.Tensor], torch.Tensor]: | |
_input_key = self.get_input_key(data_batch) | |
output_dict = self._network_forward(data_batch) | |
input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY] | |
# pass loss_mask to loss computation | |
inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))} | |
loss_dict, loss_value = self.loss(inputs, output_dict, iteration) | |
return dict({PREDICTION: recon_images, **loss_dict}), loss_value | |
def validation_step( | |
self, | |
data_batch: dict[str, torch.Tensor], | |
iteration: int, | |
ema_model: bool = False, | |
) -> tuple[dict[str, torch.Tensor], torch.Tensor]: | |
_input_key = self.get_input_key(data_batch) | |
output_dict = self._network_forward(data_batch) | |
input_images, recon_images = data_batch[_input_key], output_dict[RECON_KEY] | |
# pass loss_mask to loss computation | |
inputs = {INPUT_KEY: input_images, MASK_KEY: data_batch.get("loss_mask", torch.ones_like(input_images))} | |
loss_dict, loss_value = self.loss(inputs, output_dict, iteration) | |
metric_dict = self.metric(input_images, output_dict, iteration) | |
loss_dict.update(metric_dict) | |
prediction_key = EMA_PREDICTION if ema_model else PREDICTION | |
return dict({prediction_key: recon_images, **loss_dict}), loss_value | |
def forward(self, data_batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
_input_key = self.get_input_key(data_batch) | |
output_dict = self._network_forward(data_batch) | |
return dict({PREDICTION: output_dict[RECON_KEY]}) | |