Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import IO | |
import numpy as np | |
import torch | |
from cosmos_predict1.utils.easy_io.handlers.base import BaseFileHandler | |
try: | |
import imageio | |
except ImportError: | |
imageio = None | |
class ImageioVideoHandler(BaseFileHandler): | |
str_like = False | |
def load_from_fileobj(self, file: IO[bytes], format: str = "mp4", mode: str = "rgb", **kwargs): | |
""" | |
Load video from a file-like object using imageio with specified format and color mode. | |
Parameters: | |
file (IO[bytes]): A file-like object containing video data. | |
format (str): Format of the video file (default 'mp4'). | |
mode (str): Color mode of the video, 'rgb' or 'gray' (default 'rgb'). | |
Returns: | |
tuple: A tuple containing an array of video frames and metadata about the video. | |
""" | |
file.seek(0) | |
video_reader = imageio.get_reader(file, format, **kwargs) | |
video_frames = [] | |
for frame in video_reader: | |
if mode == "gray": | |
import cv2 # Convert frame to grayscale if mode is gray | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
frame = np.expand_dims(frame, axis=2) # Keep frame dimensions consistent | |
video_frames.append(frame) | |
return np.array(video_frames), video_reader.get_meta_data() | |
def dump_to_fileobj( | |
self, | |
obj: np.ndarray | torch.Tensor, | |
file: IO[bytes], | |
format: str = "mp4", # pylint: disable=redefined-builtin | |
fps: int = 17, | |
quality: int = 5, | |
**kwargs, | |
): | |
""" | |
Save an array of video frames to a file-like object using imageio. | |
Parameters: | |
obj (np.ndarray): An array of frames to be saved as video. | |
file (IO[bytes]): A file-like object to which the video data will be written. | |
format (str): Format of the video file (default 'mp4'). | |
fps (int): Frames per second of the output video (default 30). | |
""" | |
if isinstance(obj, torch.Tensor): | |
assert obj.dtype == torch.uint8 | |
obj = obj.cpu().numpy() | |
h, w = obj.shape[1:-1] | |
kwargs = { | |
"fps": fps, | |
"quality": quality, | |
"macro_block_size": 1, | |
"ffmpeg_params": ["-s", f"{w}x{h}"], | |
"output_params": ["-f", "mp4"], | |
} | |
imageio.mimsave(file, obj, format, **kwargs) | |
def dump_to_str(self, obj, **kwargs): | |
raise NotImplementedError | |