roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from apex.multi_tensor_apply import multi_tensor_applier
from cosmos_predict1.utils import distributed, log
class FusedAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
Currently GPU-only. Requires Apex to be installed via
``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``.
This version of fused Adam implements 2 fusions.
* Fusion of the Adam update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters
into one or a few kernel launches.
:class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adam_w_mode=False``::
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
...
opt.step()
:class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp,
you may choose any ``opt_level``::
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....)
model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2")
...
opt.step()
In general, ``opt_level="O1"`` is recommended.
.. warning::
A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``.
These additional arguments are now deprecated and unnecessary.
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
capturable (bool, optional): whether to use the version of the optimizer
that can be used with CUDA Graphs. (default: False)
master_weights (bool, optional): whether to maintain FP32 master weights
in the optimizer with FP16 mixed precision training, currently can
only be used with capturable set to True. (default: False)
.. _Adam - A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
adam_w_mode=True,
weight_decay=0.0,
amsgrad=False,
capturable=False,
master_weights=False,
):
if amsgrad:
raise RuntimeError("FusedAdam does not support the AMSGrad variant.")
if master_weights and not capturable:
raise RuntimeError("Master weights is currently only supported with the capturable version.")
# If the optimizer is capturable then LR should be a tensor (on GPU)
log.warning(f"FusedAdam master_weights: {master_weights} capturable: {capturable}")
lr = torch.tensor(lr, dtype=torch.float32) if capturable else lr
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
super(FusedAdam, self).__init__(params, defaults)
self.adam_w_mode = 1 if adam_w_mode else 0
self.capturable = capturable
self.master_weights = master_weights
self.param_groups_master = None
if capturable:
for idx, group in enumerate(self.param_groups):
if len(group["params"]) == 0:
continue
device = group["params"][0].device
for item in ["lr"]:
if isinstance(group[item], float):
group[item] = torch.tensor(group[item], dtype=torch.float32)
self.param_groups[idx][item] = group[item].to(device=device)
self._step_supports_amp_scaling = True
if multi_tensor_applier.available:
import amp_C
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
self.multi_tensor_adam = amp_C.multi_tensor_adam
self.multi_tensor_adam_capturable = amp_C.multi_tensor_adam_capturable
self.multi_tensor_adam_capturable_master = amp_C.multi_tensor_adam_capturable_master
else:
raise RuntimeError("apex.optimizers.FusedAdam requires cuda extensions")
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
"""
if any(p is not None for p in [grads, output_params, scale, grad_norms]):
raise RuntimeError(
"FusedAdam has been updated. "
"Simply initialize it identically to torch.optim.Adam, and call step() with no arguments."
)
loss = None
if closure is not None:
loss = closure()
if self.param_groups_master is None:
# Create full precision master weights
self.param_groups_master = []
for i, pg in enumerate(self.param_groups):
param_list = pg["params"]
self.param_groups_master.append(
{
"params": [p.clone().detach().float() if self.master_weights else None for p in param_list],
}
)
for group, group_master in zip(self.param_groups, self.param_groups_master):
if len(group["params"]) == 0:
continue
device = group["params"][0].device
bias_correction = 1 if "bias_correction" in group and group["bias_correction"] else 0
beta1, beta2 = group["betas"]
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if "step" in group:
if self.capturable:
group["step"] = (
group["step"].to(device=device)
if isinstance(group["step"], torch.Tensor)
else torch.tensor(group["step"], dtype=torch.int32, device=device)
)
group["step"] += (self._dummy_overflow_buf != 1).to(torch.int)
else:
group["step"] += 1
else:
group["step"] = 1 if not self.capturable else torch.tensor([1], dtype=torch.int, device=device)
if self.capturable:
group["lr"] = (
group["lr"].to(device=device)
if isinstance(group["lr"], torch.Tensor)
else torch.tensor(group["lr"], dtype=torch.float32, device=device)
)
# create lists for multi-tensor apply
g_16, p_16, m_16, v_16 = [], [], [], []
g_bf, p_bf, m_bf, v_bf = [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
p_16_master = []
p_32_master = []
bf16_master = []
for p, p_master in zip(group["params"], group_master["params"]):
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data).float()
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p.data).float()
if p.dtype == torch.float16:
if self.master_weights:
p_16_master.append(p_master.data)
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state["exp_avg"])
v_16.append(state["exp_avg_sq"])
elif p.dtype == torch.bfloat16:
if self.master_weights:
bf16_master.append(p_master.data)
g_bf.append(p.grad)
p_bf.append(p)
m_bf.append(state["exp_avg"])
v_bf.append(state["exp_avg_sq"])
elif p.dtype == torch.float32:
if self.master_weights:
p_32_master.append(p_master.data)
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state["exp_avg"])
v_32.append(state["exp_avg_sq"])
else:
raise RuntimeError("FusedAdam only support fp16 and fp32.")
# If the optimizer is capturable, then if there's a grad scaler it works
# on the GPU + a different multi_tensor_applier should be called
if self.capturable:
# overflow check of gradients
found_inf = (
grad_scaler._check_inf_per_device(self)[device]
if grad_scaler is not None
else torch.zeros((1,), device=device)
)
self._dummy_overflow_buf.copy_(found_inf)
# get unscale scale factor
scale, inv_scale = None, None
if grad_scaler:
scale = grad_scaler._get_scale_async()
inv_scale = scale.double().reciprocal().float()
else:
scale = torch.ones((1,), device=device, dtype=torch.float32)
inv_scale = torch.ones((1,), device=device, dtype=torch.float32)
if len(g_16) > 0:
multi_tensor_applier(
(
self.multi_tensor_adam_capturable_master
if self.master_weights
else self.multi_tensor_adam_capturable
),
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16, p_16_master] if self.master_weights else [g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
inv_scale,
)
if len(g_bf) > 0:
multi_tensor_applier(
(
self.multi_tensor_adam_capturable_master
if self.master_weights
else self.multi_tensor_adam_capturable
),
self._dummy_overflow_buf,
[g_bf, p_bf, m_bf, v_bf, bf16_master] if self.master_weights else [g_bf, p_bf, m_bf, v_bf],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
inv_scale,
)
if len(g_32) > 0:
multi_tensor_applier(
(
self.multi_tensor_adam_capturable_master
if self.master_weights
else self.multi_tensor_adam_capturable
),
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32, p_32_master] if self.master_weights else [g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
inv_scale,
)
else:
if len(g_16) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
if len(g_bf) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_bf, p_bf, m_bf, v_bf],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
if len(g_32) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
return loss
def load_state_dict(self, state_dict):
super().load_state_dict(state_dict)
for group in self.param_groups:
if self.capturable:
group["lr"] = (
group["lr"].cuda()
if isinstance(group["lr"], torch.Tensor)
else torch.tensor(group["lr"], dtype=torch.float32).cuda()
)
if "step" in group:
if self.capturable:
if distributed.get_rank() == 0:
step = (
group["step"].cuda()
if isinstance(group["step"], torch.Tensor)
else torch.tensor([group["step"]], dtype=torch.int32).cuda()
)
else:
step = torch.zeros(1, dtype=torch.int32).cuda()
# make it compatible with FSDP optimizer
distributed.broadcast(step, 0)
group["step"] = step
elif isinstance(group["step"], torch.Tensor):
group["step"] = group["step"].item()
for p in group["params"]:
state = self.state[p]
if "exp_avg" in state:
state["exp_avg"] = state["exp_avg"].float()
state["exp_avg_sq"] = state["exp_avg_sq"].float()