roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import builtins
import collections.abc as abc
import importlib
import inspect
import logging
import os
import pickle
import uuid
from collections import OrderedDict
from contextlib import contextmanager
from copy import deepcopy
from dataclasses import is_dataclass
from typing import Any, Dict, List, Tuple, Union
import attrs
import yaml
from omegaconf import DictConfig, ListConfig, OmegaConf
from cosmos_predict1.utils.lazy_config.file_io import PathManager
from cosmos_predict1.utils.lazy_config.registry import _convert_target_to_string
try:
import dill as dill_pickle
except ImportError:
dill_pickle = None
try:
import cloudpickle
except ImportError:
cloudpickle = None
__all__ = ["LazyCall", "LazyConfig"]
def sort_dict(d: Dict[str, Any]) -> OrderedDict[str, Any]:
return OrderedDict(sorted(d.items(), key=lambda x: x[0]))
def dict_representer(dumper: yaml.Dumper, data: OrderedDict[str, Any]) -> yaml.nodes.MappingNode:
return dumper.represent_mapping("tag:yaml.org,2002:map", data.items())
def sort_recursive(obj: Union[Dict[str, Any], List[Any], Any]) -> Union[OrderedDict[str, Any], List[Any], Any]:
if isinstance(obj, dict):
return sort_dict({k: sort_recursive(v) for k, v in obj.items()})
elif isinstance(obj, list):
return [sort_recursive(item) for item in obj]
return obj
yaml.add_representer(OrderedDict, dict_representer)
def get_default_params(cls_or_func):
if callable(cls_or_func):
# inspect signature for function
signature = inspect.signature(cls_or_func)
else:
# inspect signature for class
signature = inspect.signature(cls_or_func.__init__)
params = signature.parameters
default_params = {
name: param.default for name, param in params.items() if param.default is not inspect.Parameter.empty
}
return default_params
class LazyCall:
"""
Wrap a callable so that when it's called, the call will not be executed,
but returns a dict that describes the call.
LazyCall object has to be called with only keyword arguments. Positional
arguments are not yet supported.
Examples:
::
from detectron2.config import instantiate, LazyCall
layer_cfg = LazyCall(nn.Conv2d)(in_channels=32, out_channels=32)
layer_cfg.out_channels = 64 # can edit it afterwards
layer = instantiate(layer_cfg)
"""
def __init__(self, target):
if not (callable(target) or isinstance(target, (str, abc.Mapping))):
raise TypeError(f"target of LazyCall must be a callable or defines a callable! Got {target}")
self._target = target
def __call__(self, **kwargs):
if is_dataclass(self._target) or attrs.has(self._target):
# omegaconf object cannot hold dataclass type
# https://github.com/omry/omegaconf/issues/784
target = _convert_target_to_string(self._target)
else:
target = self._target
kwargs["_target_"] = target
_final_params = get_default_params(self._target)
_final_params.update(kwargs)
return DictConfig(content=_final_params, flags={"allow_objects": True})
def _visit_dict_config(cfg, func):
"""
Apply func recursively to all DictConfig in cfg.
"""
if isinstance(cfg, DictConfig):
func(cfg)
for v in cfg.values():
_visit_dict_config(v, func)
elif isinstance(cfg, ListConfig):
for v in cfg:
_visit_dict_config(v, func)
def _validate_py_syntax(filename):
# see also https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/config.py
with PathManager.open(filename, "r") as f:
content = f.read()
try:
ast.parse(content)
except SyntaxError as e:
raise SyntaxError(f"Config file {filename} has syntax error!") from e
def _cast_to_config(obj):
# if given a dict, return DictConfig instead
if isinstance(obj, dict):
return DictConfig(obj, flags={"allow_objects": True})
return obj
_CFG_PACKAGE_NAME = "detectron2._cfg_loader"
"""
A namespace to put all imported config into.
"""
def _random_package_name(filename):
# generate a random package name when loading config files
return _CFG_PACKAGE_NAME + str(uuid.uuid4())[:4] + "." + os.path.basename(filename)
@contextmanager
def _patch_import():
"""
Enhance relative import statements in config files, so that they:
1. locate files purely based on relative location, regardless of packages.
e.g. you can import file without having __init__
2. do not cache modules globally; modifications of module states has no side effect
3. support other storage system through PathManager, so config files can be in the cloud
4. imported dict are turned into omegaconf.DictConfig automatically
"""
old_import = builtins.__import__
def find_relative_file(original_file, relative_import_path, level):
# NOTE: "from . import x" is not handled. Because then it's unclear
# if such import should produce `x` as a python module or DictConfig.
# This can be discussed further if needed.
relative_import_err = """
Relative import of directories is not allowed within config files.
Within a config file, relative import can only import other config files.
""".replace(
"\n", " "
)
if not len(relative_import_path):
raise ImportError(relative_import_err)
cur_file = os.path.dirname(original_file)
for _ in range(level - 1):
cur_file = os.path.dirname(cur_file)
cur_name = relative_import_path.lstrip(".")
for part in cur_name.split("."):
cur_file = os.path.join(cur_file, part)
if not cur_file.endswith(".py"):
cur_file += ".py"
if not PathManager.isfile(cur_file):
cur_file_no_suffix = cur_file[: -len(".py")]
if PathManager.isdir(cur_file_no_suffix):
raise ImportError(f"Cannot import from {cur_file_no_suffix}." + relative_import_err)
else:
raise ImportError(
f"Cannot import name {relative_import_path} from " f"{original_file}: {cur_file} does not exist."
)
return cur_file
def new_import(name, globals=None, locals=None, fromlist=(), level=0):
if (
# Only deal with relative imports inside config files
level != 0
and globals is not None
and (globals.get("__package__", "") or "").startswith(_CFG_PACKAGE_NAME)
):
cur_file = find_relative_file(globals["__file__"], name, level)
_validate_py_syntax(cur_file)
spec = importlib.machinery.ModuleSpec(_random_package_name(cur_file), None, origin=cur_file)
module = importlib.util.module_from_spec(spec)
module.__file__ = cur_file
with PathManager.open(cur_file) as f:
content = f.read()
exec(compile(content, cur_file, "exec"), module.__dict__)
for name in fromlist: # turn imported dict into DictConfig automatically
val = _cast_to_config(module.__dict__[name])
module.__dict__[name] = val
return module
return old_import(name, globals, locals, fromlist=fromlist, level=level)
builtins.__import__ = new_import
yield new_import
builtins.__import__ = old_import
class LazyConfig:
"""
Provide methods to save, load, and overrides an omegaconf config object
which may contain definition of lazily-constructed objects.
"""
@staticmethod
def load_rel(filename: str, keys: Union[None, str, Tuple[str, ...]] = None):
"""
Similar to :meth:`load()`, but load path relative to the caller's
source file.
This has the same functionality as a relative import, except that this method
accepts filename as a string, so more characters are allowed in the filename.
"""
caller_frame = inspect.stack()[1]
caller_fname = caller_frame[0].f_code.co_filename
assert caller_fname != "<string>", "load_rel Unable to find caller"
caller_dir = os.path.dirname(caller_fname)
filename = os.path.join(caller_dir, filename)
return LazyConfig.load(filename, keys)
@staticmethod
def load(filename: str, keys: Union[None, str, Tuple[str, ...]] = None):
"""
Load a config file.
Args:
filename: absolute path or relative path w.r.t. the current working directory
keys: keys to load and return. If not given, return all keys
(whose values are config objects) in a dict.
"""
has_keys = keys is not None
filename = filename.replace("/./", "/") # redundant
if os.path.splitext(filename)[1] not in [".py", ".yaml", ".yml"]:
raise ValueError(f"Config file {filename} has to be a python or yaml file.")
if filename.endswith(".py"):
_validate_py_syntax(filename)
with _patch_import():
# Record the filename
module_namespace = {
"__file__": filename,
"__package__": _random_package_name(filename),
}
with PathManager.open(filename) as f:
content = f.read()
# Compile first with filename to:
# 1. make filename appears in stacktrace
# 2. make load_rel able to find its parent's (possibly remote) location
exec(compile(content, filename, "exec"), module_namespace)
ret = module_namespace
else:
with PathManager.open(filename) as f:
obj = yaml.unsafe_load(f)
ret = OmegaConf.create(obj, flags={"allow_objects": True})
if has_keys:
if isinstance(keys, str):
return _cast_to_config(ret[keys])
else:
return tuple(_cast_to_config(ret[a]) for a in keys)
else:
if filename.endswith(".py"):
# when not specified, only load those that are config objects
ret = DictConfig(
{
name: _cast_to_config(value)
for name, value in ret.items()
if isinstance(value, (DictConfig, ListConfig, dict)) and not name.startswith("_")
},
flags={"allow_objects": True},
)
return ret
@staticmethod
def save_pkl(cfg, filename: str) -> str:
"""
Saves a Config object to a file using pickle serialization. This method is typically used
when the configuration object contains complex objects, such as lambdas, that are not supported by
simpler serialization methods like YAML. The function attempts to create a deep copy of the configuration
object before serialization to ensure that the original object remains unmodified.
Args:
cfg: A Config object to be serialized and saved.
filename: The path and name of the file where the configuration should be saved. The function
assumes the file extension indicates a pickle format (e.g., .pkl).
Returns:
str: The filename to which the configuration was saved. This can be used to verify the file location
or log the outcome.
Notes:
- The function logs a warning if the configuration is successfully saved using pickle.
- If saving fails, an error is logged with the exception details.
"""
logger = logging.getLogger(__name__)
try:
cfg = deepcopy(cfg)
except Exception:
pass
try:
with PathManager.open(filename, "wb") as f:
pickle.dump(cfg, f)
logger.warning(f"Config is saved using pickle at {filename}.")
except Exception as e:
logger.error(f"Failed to save config to {filename}: {e}. Trying dill or cloudpickle instead")
if dill_pickle:
try:
with PathManager.open(filename, "wb") as f:
pickle.dump(dill_pickle.dumps(cfg, recurse=True), f)
logger.warning(f"Config is saved using dill at {filename}.")
except Exception as e:
logger.error(f"Failed to save config to {filename}: {e}.")
if cloudpickle:
try:
with PathManager.open(filename, "wb") as f:
pickle.dump(cloudpickle.dumps(cfg), f)
logger.warning(f"Config is saved using cloudpickle at {filename}.")
except Exception as e:
logger.error(f"Failed to save config to {filename}: {e}.")
else:
logger.error("cloudpickle is not available. Cannot save the config.")
raise e
return filename
@staticmethod
def save_yaml(cfg, filename: str) -> str:
"""
Saves a Config object to a file using YAML serialization. This method is beneficial when the configuration object's content needs to be human-readable and easily editable. YAML is suitable for configurations that do not contain complex types like lambdas, which must be handled differently. The function converts unserializable items to strings before saving to ensure compatibility with YAML serialization.
Args:
cfg: A Config object to be serialized and saved. It handles both DictConfig and ListConfig types.
filename: The path and name of the file where the configuration should be saved. The function does not require a specific file extension but typically uses '.yaml'.
Returns:
str: The filename to which the configuration was saved. This can be used to verify the file location or log the outcome.
Notes:
- The function logs a warning if the configuration is successfully saved using YAML.
- If saving fails, an error is logged with the exception details.
"""
logger = logging.getLogger(__name__)
try:
cfg = deepcopy(cfg)
except Exception:
pass
# Define a function to check if an item is serializable to YAML
def is_serializable(item):
try:
OmegaConf.to_yaml(item)
return True
except Exception as e:
return False
# Function to convert unserializable items to strings
def serialize_config(config):
if isinstance(config, DictConfig):
for key, value in config.items():
if isinstance(value, (DictConfig, ListConfig)):
try:
if "_target_" in value:
default_params = get_default_params(value["_target_"])
for default_key, default_v in default_params.items():
if default_key not in value:
value[default_key] = default_v
except Exception as e:
logger.error(f"Failed to add default argument values: {e}")
serialize_config(value)
else:
if not is_serializable(value) and value is not None:
config[key] = str(value)
elif isinstance(config, ListConfig):
for i, item in enumerate(config):
if isinstance(item, (DictConfig, ListConfig)):
serialize_config(item)
else:
if not is_serializable(item) and item is not None:
config[i] = str(item)
else:
raise NotImplementedError("Input config must be a DictConfig or ListConfig.")
return config
# Convert Config object to a DictConfig object.
config_dict = attrs.asdict(cfg)
config_omegaconf = DictConfig(content=config_dict, flags={"allow_objects": True})
# Serialize the DictConfig object by converting non-serializable objects to strings.
config_omegaconf = serialize_config(config_omegaconf)
config_dict: Dict[str, Any] = OmegaConf.to_container(config_omegaconf, resolve=True)
sorted_config: OrderedDict[str, Any] = sort_recursive(config_dict)
with open(filename, "w") as f:
yaml.dump(sorted_config, f, default_flow_style=False)
logger.warning(f"Config is saved using omegaconf at {filename}.")
return filename