Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import List | |
import torch | |
class WarmupLambdaLR(torch.optim.lr_scheduler.LambdaLR): | |
def __init__(self, optimizer, warmup, last_epoch=-1, verbose=False): | |
# Define the lambda function based on the warmup period | |
self.warmup = warmup | |
def lr_lambda(epoch): | |
# Increase lr linearly for the first 'warmup' epochs | |
if epoch < warmup: | |
return float(epoch + 1) / warmup | |
# After 'warmup' epochs, keep lr constant | |
return 1.0 | |
# Initialize the parent class with the generated lr_lambda | |
super(WarmupLambdaLR, self).__init__(optimizer, lr_lambda, last_epoch, verbose) | |
# cosine lr decay scheduler with warmup from https://github.com/karpathy/nanoGPT/blob/master/train.py#L228 | |
class WarmupCosineLR(torch.optim.lr_scheduler.LRScheduler): | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
warmup_iters: int, | |
lr_decay_iters: int, | |
min_lr: float, | |
last_epoch: int = -1, | |
): | |
self.warmup_iters = warmup_iters | |
self.lr_decay_iters = lr_decay_iters | |
self.min_lr = min_lr | |
super().__init__(optimizer, last_epoch) | |
def get_lr(self) -> List[float]: | |
# 1) linear warmup for warmup_iters steps | |
if self.last_epoch < self.warmup_iters: | |
return [base_lr * self.last_epoch / self.warmup_iters for base_lr in self.base_lrs] | |
# 2) if it > lr_decay_iters, return min learning rate | |
if self.last_epoch > self.lr_decay_iters: | |
return [self.min_lr for _ in self.base_lrs] | |
# 3) in between, use cosine decay down to min learning rate | |
decay_ratio = (self.last_epoch - self.warmup_iters) / (self.lr_decay_iters - self.warmup_iters) | |
assert 0 <= decay_ratio <= 1 | |
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 | |
return [self.min_lr + coeff * (base_lr - self.min_lr) for base_lr in self.base_lrs] | |