GENC3-docker / scripts /download_gen3c_checkpoints.py
roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import hashlib
import json
import os
import shutil
from glob import glob
from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints
def parse_args():
parser = argparse.ArgumentParser(description="Download NVIDIA Cosmos Predict1 Gen3C models from Hugging Face")
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints."
)
args = parser.parse_args()
return args
def convert_pixtral_checkpoint(checkpoint_dir: str, checkpoint_name: str, vit_type: str):
"""
Main function to convert Pixtral vision model weights to checkpoint and optionally verify and save the converted checkpoint.
Args:
checkpoint_dir (str): Path to the checkpoint directory
checkpoint_name (str): Name of the checkpoint
vit_type (str): Type of ViT used in the Pixtral model
This function performs the following steps:
0. Download the checkpoint from Hugging Face
1. Loads the original Pixtral checkpoint
2. Splits the checkpoint into vision encoder, projector, and LLM weights
3. Reorganizes the weights to match the expected format
4. Extracts and verifies the vision encoder configuration
5. Optionally verifies the converted checkpoint by loading it into a VisionTransformer
6. Optionally saves the converted checkpoint and configuration
"""
save_dir = os.path.join(checkpoint_dir, checkpoint_name)
os.makedirs(save_dir, exist_ok=True)
# Save the converted checkpoint
save_path = os.path.join(save_dir, "model.pt")
if os.path.exists(save_path) and os.path.getsize(save_path) > 0:
print(f"Checkpoint {save_path} already exists and is not empty")
return
pixtral_ckpt_dir = os.path.join(checkpoint_dir, "Pixtral-12B-2409")
os.makedirs(pixtral_ckpt_dir, exist_ok=True)
repo_id = "mistralai/Pixtral-12B-2409"
print(f"Downloading {repo_id} to {pixtral_ckpt_dir}...")
snapshot_download(
repo_id=repo_id,
allow_patterns=["params.json", "consolidated.safetensors"],
local_dir=pixtral_ckpt_dir,
local_dir_use_symlinks=False,
)
orig_dtype = torch.get_default_dtype()
dtype = torch.bfloat16
torch.set_default_dtype(dtype)
# Load checkpoint file
ckpt_files = glob(os.path.join(pixtral_ckpt_dir, "*.safetensors"))
assert len(ckpt_files) == 1, "ckpt_dir should contain only one file"
ckpt_path = ckpt_files[0]
ckpt = load_file(ckpt_path)
# Split checkpoint into weights of vision encoder, projector, and LLM
vit_key_prefix = "vision_encoder."
vit_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix):
vit_ckpt[key.lstrip(vit_key_prefix)] = value
projector_key_prefix = "vision_language_adapter."
projector_ckpt = {}
substring_replacement_map = {
"w_in.": "projector.0.",
"w_out.": "projector.2.",
}
for key, value in ckpt.items():
if key.startswith(projector_key_prefix):
key = key.lstrip(projector_key_prefix)
for old, new in substring_replacement_map.items():
key = key.replace(old, new)
projector_ckpt[key] = value
llm_ckpt = {}
for key, value in ckpt.items():
if key.startswith(vit_key_prefix) or key.startswith(projector_key_prefix):
continue
llm_ckpt[key] = value
vlm_ckpt = {}
for key, value in llm_ckpt.items():
vlm_ckpt["model." + key] = value
for key, value in projector_ckpt.items():
vlm_ckpt["mm_projector." + key] = value
for key, value in vit_ckpt.items():
vlm_ckpt["vision_encoder." + key] = value
# Load config
config_path = os.path.join(pixtral_ckpt_dir, "params.json")
with open(config_path, "r") as f:
pixtral_config = json.load(f)
# Extract the vision encoder configuration
vision_encoder_config = {
"dim": pixtral_config["vision_encoder"]["hidden_size"],
"num_channels": pixtral_config["vision_encoder"]["num_channels"],
"image_size": pixtral_config["vision_encoder"]["image_size"],
"patch_size": pixtral_config["vision_encoder"]["patch_size"],
"rope_theta": pixtral_config["vision_encoder"]["rope_theta"],
"ffn_hidden_size": pixtral_config["vision_encoder"]["intermediate_size"],
"n_layers": pixtral_config["vision_encoder"]["num_hidden_layers"],
"n_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"n_kv_heads": pixtral_config["vision_encoder"]["num_attention_heads"],
"norm_type": "rmsnorm",
"norm_eps": pixtral_config["norm_eps"],
"image_token_id": pixtral_config["vision_encoder"]["image_token_id"],
}
# Configuration for the 400M ViT of Pixtral 12B VLM
vit_config = dict(
dim=1024,
num_channels=3,
image_size=1024,
patch_size=16,
rope_theta=10000,
ffn_hidden_size=4096,
n_layers=24,
n_heads=16,
n_kv_heads=16,
norm_type="rmsnorm",
norm_eps=1e-5,
image_token_id=10,
)
# Compare the two configurations
for key, value in vit_config.items():
assert vision_encoder_config[key] == value, f"Mismatch in {key}: {vision_encoder_config[key]} != {value}"
llm_config_keys = [
"dim",
"n_layers",
"head_dim",
"hidden_dim",
"n_heads",
"n_kv_heads",
"rope_theta",
"norm_eps",
"vocab_size",
]
assert set(list(pixtral_config.keys())) == set(llm_config_keys + ["vision_encoder"]), "Config keys mismatch"
replace_map = {
"hidden_dim": "ffn_hidden_size",
}
llm_config = {}
for k, v in pixtral_config.items():
if k in llm_config_keys:
llm_config[replace_map.get(k, k)] = v
elif k == "vision_encoder":
llm_config["vision_encoder"] = vit_type
else:
raise ValueError(f"Unknown key: {k}")
ckpt_to_save = {"model": vlm_ckpt, "mm_projector": projector_ckpt, "vision_encoder": vit_ckpt}
torch.save(ckpt_to_save, save_path)
print(f"Model saved to {save_path}")
# Save config
config_path = os.path.join(save_dir, "config.json")
with open(config_path, "w") as f:
json.dump(llm_config, f)
torch.set_default_dtype(orig_dtype) # Reset the default dtype
# Remove the original Pixtral checkpoint
shutil.rmtree(pixtral_ckpt_dir, ignore_errors=True)
print(f"Removed {pixtral_ckpt_dir}")
MD5_CHECKSUM_LOOKUP = {
"Cosmos-Predict1-14B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-14B-Text2World/model.pt": "c69d1c6e51dc78b959040e8c4035a29b",
"Cosmos-Predict1-14B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-14B-Video2World/model.pt": "eaa7aa3678f61d88108c41d7fe201b18",
"Cosmos-Predict1-7B-WorldInterpolator/model.pt": "48a0bdc99d5e41eee05ba8597c4851da",
"Cosmos-Predict1-7B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-7B-Text2World/model.pt": "fe9ed68e16cf37b10e7414c9b3ee81e1",
"Cosmos-Predict1-7B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-Predict1-7B-Video2World/model.pt": "ebcdb19c4c4a6a0e1e0bb65e346f6867",
"Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96",
"Cosmos-Tokenize1-CV8x8x8-720p/image_mean_std.pt": "9f19fd3312fc1198e4905ada02e68bce",
"Cosmos-UpsamplePrompt1-12B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf",
"Cosmos-UpsamplePrompt1-12B-Text2World/model.pt": "52d7a6b8b1ac44d856b4c1ea3f8c8c74",
"Cosmos-Predict1-7B-Text2World-Sample-AV-Multiview/model.pt": "e3a6ef070deaae0678acd529dc749ea4",
"Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview/model.pt": "1653f87dce3d558ee01416593552a91c",
"Gen3C-Cosmos-7B/model.pt": "38644bf823aa5272acef60cfad8bc0f7",
"google-t5/t5-11b/pytorch_model.bin": "f890878d8a162e0045a25196e27089a3",
"google-t5/t5-11b/tf_model.h5": "e081fc8bd5de5a6a9540568241ab8973",
}
def get_md5_checksum(checkpoints_dir, model_name):
print("---------------------")
# Check if there are any expected files for this model
expected_files = [key for key in MD5_CHECKSUM_LOOKUP if key.startswith(model_name + "/")]
if not expected_files:
# No expected files in MD5_CHECKSUM_LOOKUP, check if the directory exists and has content
model_dir = checkpoints_dir / model_name
if not model_dir.exists() or not any(model_dir.iterdir()):
print(f"Directory for {model_name} does not exist or is empty. Download required.")
return False
else:
print(f"Directory for {model_name} exists and contains files. Assuming download is complete.")
return True
# Proceed with checksum verification for models with expected files
for key, value in MD5_CHECKSUM_LOOKUP.items():
if key.startswith(model_name + "/"):
print(f"Verifying checkpoint {key}...")
file_path = checkpoints_dir.joinpath(key)
# File must exist
if not Path(file_path).exists():
print(f"Checkpoint {key} does not exist.")
return False
# File must match given MD5 checksum
with open(file_path, "rb") as f:
file_md5 = hashlib.md5(f.read()).hexdigest()
if file_md5 != value:
print(f"MD5 checksum of checkpoint {key} does not match.")
return False
print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.")
return True
def main(args):
ORG_NAME = "nvidia"
# Additional models that are always downloaded
extra_models = [
"Cosmos-Tokenize1-CV8x8x8-720p",
"google-t5/t5-11b",
]
# Create local checkpoints folder
checkpoints_dir = Path(args.checkpoint_dir)
checkpoints_dir.mkdir(parents=True, exist_ok=True)
download_kwargs = dict(
allow_patterns=[
"README.md",
"model.pt",
"mean_std.pt",
"image_mean_std.pt",
"config.json",
"*.jit",
"guardrail/*",
]
)
# Download the requested diffusion models
model_name = "Gen3C-Cosmos-7B"
repo_id = f"{ORG_NAME}/{model_name}"
local_dir = checkpoints_dir.joinpath(model_name)
if not get_md5_checksum(checkpoints_dir, model_name):
local_dir.mkdir(parents=True, exist_ok=True)
print(f"Downloading {repo_id} to {local_dir}...")
snapshot_download(
repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs
)
# Download the always-included models
for model_name in extra_models:
if model_name == "google-t5/t5-11b":
repo_id = model_name
else:
repo_id = f"{ORG_NAME}/{model_name}"
local_dir = checkpoints_dir.joinpath(model_name)
if not get_md5_checksum(checkpoints_dir, model_name):
local_dir.mkdir(parents=True, exist_ok=True)
print(f"Downloading {repo_id} to {local_dir}...")
# Download all files for Guardrail
snapshot_download(
repo_id=repo_id,
local_dir=str(local_dir),
local_dir_use_symlinks=False,
)
if __name__ == "__main__":
args = parse_args()
main(args)