GENC3-docker / scripts /get_t5_embeddings.py
roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import pickle
from typing import Tuple
import numpy as np
import torch
from transformers import T5EncoderModel, T5TokenizerFast
"""example command
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/hdvila
"""
def parse_args() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Compute T5 embeddings for text prompts")
parser.add_argument("--dataset_path", type=str, default="datasets/hdvila", help="Root path to the dataset")
parser.add_argument("--max_length", type=int, default=512, help="Maximum length of the text embedding")
parser.add_argument(
"--pretrained_model_name_or_path", type=str, default="google-t5/t5-11b", help="T5 model name or the local path"
)
parser.add_argument("--cache_dir", type=str, default="checkpoints", help="Directory to cache the T5 model")
return parser.parse_args()
def init_t5(
pretrained_model_name_or_path: str = "google-t5/t5-11b", max_length: int = 512, cache_dir: str = "~/.cache"
) -> Tuple[T5TokenizerFast, T5EncoderModel]:
"""Initialize and return the T5 tokenizer and text encoder."""
tokenizer = T5TokenizerFast.from_pretrained(
pretrained_model_name_or_path, model_max_length=max_length, cache_dir=cache_dir
)
text_encoder = T5EncoderModel.from_pretrained(pretrained_model_name_or_path, cache_dir=cache_dir)
text_encoder.to("cuda")
text_encoder.eval()
return tokenizer, text_encoder
@torch.inference_mode()
def encode_for_batch(tokenizer, encoder, prompts: list[str], max_length=512) -> list:
"""
Encode a batch of text prompts to a batch of T5 embeddings.
Parameters:
tokenizer: T5 embedding tokenizer.
encoder: T5 embedding text encoder.
prompts: A batch of text prompts.
max_length: Sequence length of text embedding (defaults to 512).
"""
batch_encoding = tokenizer.batch_encode_plus(
prompts,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=max_length,
return_length=True,
return_offsets_mapping=False,
)
# We expect all the processing is done on GPU.
input_ids = batch_encoding.input_ids.cuda()
attn_mask = batch_encoding.attention_mask.cuda()
outputs = encoder(input_ids=input_ids, attention_mask=attn_mask)
encoded_text = outputs.last_hidden_state
lengths = attn_mask.sum(dim=1).cpu()
for batch_id in range(encoded_text.shape[0]):
encoded_text[batch_id][lengths[batch_id] :] = 0
encoded_text = encoded_text.cpu().numpy().astype(np.float16)
encoded_text = encoded_text[:, :max_length]
# trim zeros to save space
encoded_text = [encoded_text[batch_id][: lengths[batch_id]] for batch_id in range(encoded_text.shape[0])]
return encoded_text
def main(args) -> None:
metas_dir = os.path.join(args.dataset_path, "metas")
metas_list = [
os.path.join(metas_dir, filename) for filename in sorted(os.listdir(metas_dir)) if filename.endswith(".txt")
]
t5_xxl_dir = os.path.join(args.dataset_path, "t5_xxl")
os.makedirs(t5_xxl_dir, exist_ok=True)
# Initialize T5
tokenizer, text_encoder = init_t5(cache_dir=args.cache_dir)
for meta_filename in metas_list:
t5_xxl_filename = os.path.join(t5_xxl_dir, os.path.basename(meta_filename).replace(".txt", ".pickle"))
if os.path.exists(t5_xxl_filename):
# Skip if the file already exists
continue
with open(meta_filename, "r") as fp:
prompt = fp.read().strip()
# Compute T5 embeddings
encoded_text = encode_for_batch(tokenizer, text_encoder, [prompt])
# Save T5 embeddings as pickle file
with open(t5_xxl_filename, "wb") as fp:
pickle.dump(encoded_text, fp)
if __name__ == "__main__":
args = parse_args()
main(args)