Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import torch | |
from cosmos_predict1.autoregressive.configs.base.model_config import create_video2world_model_config | |
from cosmos_predict1.autoregressive.utils.checkpoint import obtain_tensor_parallel_state_dict | |
from cosmos_predict1.utils import log | |
def shard_checkpoint(checkpoint_path, tensor_parallel_size, model_size, model_family, target_backend="pytorch"): | |
assert checkpoint_path.endswith(".pt"), "Checkpoint path must end with .pt" | |
assert model_family == "cosmos", "Only cosmos model family is currently supported" | |
assert model_size == "4b", "Only 4B model size is currently supported" | |
model_config, _ = create_video2world_model_config( | |
model_ckpt_path=checkpoint_path, | |
model_family=model_family, | |
model_size=model_size, | |
tensor_model_parallel_size=tensor_parallel_size, | |
tokenizer_ckpt_path="checkpoints/Cosmos-Tokenize1-DV8x16x16-720p/ema.jit", | |
) | |
log.info(f"Sharding checkpoint {checkpoint_path} with {tensor_parallel_size} ranks") | |
checkpoint = torch.load(checkpoint_path, map_location="cpu", mmap=True) | |
for tensor_parallel_rank in range(tensor_parallel_size): | |
shard = obtain_tensor_parallel_state_dict( | |
checkpoint, tensor_parallel_size, tensor_parallel_rank, model_config, target_backend=target_backend | |
) | |
shard_path = checkpoint_path.replace(".pt", f"_model_mp_{tensor_parallel_rank}.pt") | |
log.info(f"Saving shard {shard_path}") | |
torch.save(shard, shard_path) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Shard NVIDIA Cosmos Predict1 autoregressive models") | |
parser.add_argument( | |
"--checkpoint_path", | |
"-c", | |
type=str, | |
required=True, | |
default="checkpoints/Cosmos-Predict1-4B/model.pt", | |
help="Path to the checkpoint to shard", | |
) | |
parser.add_argument("--tensor_parallel_size", "-t", type=int, required=True, help="Number of tensor parallel ranks") | |
parser.add_argument("--target_backend", "-b", type=str, required=False, default="pytorch", help="Target backend") | |
parser.add_argument("--model_size", "-s", type=str, required=True, help="Model size") | |
parser.add_argument("--model_family", "-f", type=str, required=False, default="cosmos", help="Model family") | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
shard_checkpoint( | |
args.checkpoint_path, args.tensor_parallel_size, args.model_size, args.model_family, args.target_backend | |
) | |