File size: 8,104 Bytes
ef39cc6
 
 
6f570d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef39cc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f570d6
 
ef39cc6
 
 
 
 
6f570d6
 
 
ef39cc6
 
 
6f570d6
 
 
 
 
 
 
 
 
ef39cc6
6f570d6
ef39cc6
6f570d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef39cc6
6f570d6
 
 
ef39cc6
6f570d6
 
 
ef39cc6
6f570d6
 
 
 
 
 
 
 
ef39cc6
 
6f570d6
 
ef39cc6
 
 
6f570d6
 
 
ef39cc6
 
6f570d6
 
ef39cc6
 
 
6f570d6
ef39cc6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import matplotlib.pyplot as plt
import pandas as pd
from utils import generate_underlined_line
from data import extract_model_data

# Figure dimensions
FIGURE_WIDTH_DUAL = 18
FIGURE_HEIGHT_DUAL = 9

# Colors
COLORS = {
    'passed': '#4CAF50',    # Medium green
    'failed': '#E53E3E',    # More red
    'skipped': '#FFD54F',   # Medium yellow
    'error': '#8B0000'      # Dark red
}

# Styling constants
BLACK = '#000000'
LABEL_COLOR = '#AAAAAA'
TITLE_COLOR = '#FFFFFF'

# Font sizes
DEVICE_TITLE_FONT_SIZE = 28

# Layout constants
SEPARATOR_LINE_Y_END = 0.85
SUBPLOT_TOP = 0.85
SUBPLOT_WSPACE = 0.4
PIE_START_ANGLE = 90
BORDER_LINE_WIDTH = 0.5
SEPARATOR_ALPHA = 0.5
SEPARATOR_LINE_WIDTH = 1
DEVICE_TITLE_PAD = 2
MODEL_TITLE_Y = 1

# Processing constants
MAX_FAILURE_ITEMS = 10


def _process_failure_category(failures_obj: dict, category: str, info_lines: list) -> None:
    """Process a single failure category (multi or single) and add to info_lines."""
    if category in failures_obj and failures_obj[category]:
        info_lines.append(generate_underlined_line(f"{category.title()} GPU failure details:"))
        if isinstance(failures_obj[category], list):
            # Handle list of failures (could be strings or dicts)
            for i, failure in enumerate(failures_obj[category][:MAX_FAILURE_ITEMS]):
                if isinstance(failure, dict):
                    # Extract meaningful info from dict (e.g., test name, line, etc.)
                    failure_str = failure.get('line', failure.get('test', 
                                            failure.get('name', str(failure))))
                    info_lines.append(f"  {i+1}. {failure_str}")
                else:
                    info_lines.append(f"  {i+1}. {str(failure)}")
            if len(failures_obj[category]) > MAX_FAILURE_ITEMS:
                remaining = len(failures_obj[category]) - MAX_FAILURE_ITEMS
                info_lines.append(f"... and {remaining} more")
        else:
            info_lines.append(str(failures_obj[category]))
        info_lines.append("")


def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
    """Extract failure information from failures object."""
    if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
        return f"No failures on {device}"
    
    info_lines = []
    
    # Add counts summary
    if multi_count > 0 or single_count > 0:
        info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
        if multi_count > 0:
            info_lines.append(f"Multi GPU failures: {multi_count}")
        if single_count > 0:
            info_lines.append(f"Single GPU failures: {single_count}")
        info_lines.append("")
    
    # Try to extract detailed failure information
    try:
        if isinstance(failures_obj, dict):
            _process_failure_category(failures_obj, 'multi', info_lines)
            _process_failure_category(failures_obj, 'single', info_lines)
        
        return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
    
    except Exception as e:
        if multi_count > 0 or single_count > 0:
            error_msg = (f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\n"
                        f"Details unavailable: {str(e)}")
            return error_msg
        return f"Error processing failure info for {device}: {str(e)}"


def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None:
    """Create a pie chart for device statistics."""
    if not filtered_stats:
        ax.text(0.5, 0.5, 'No test results', 
               horizontalalignment='center', verticalalignment='center',
               transform=ax.transAxes, fontsize=14, color='#888888',
               fontfamily='monospace', weight='normal')
        ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold', 
                    pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
        ax.axis('off')
        return
        
    chart_colors = [COLORS[category] for category in filtered_stats.keys()]
    
    # Create minimal pie chart - full pie, no donut effect
    wedges, texts, autotexts = ax.pie(
        filtered_stats.values(), 
        labels=[label.lower() for label in filtered_stats.keys()],  # Lowercase for minimal look
        colors=chart_colors,
        autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
        startangle=PIE_START_ANGLE,
        explode=None,  # No separation
        shadow=False,
        wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH),  # Minimal borders
        textprops={'fontsize': 12, 'weight': 'normal', 
                  'color': LABEL_COLOR, 'fontfamily': 'monospace'}
    )
    
    # Enhanced percentage text styling for better readability
    for autotext in autotexts:
        autotext.set_color(BLACK)  # Black text for better contrast
        autotext.set_weight('bold')
        autotext.set_fontsize(14)
        autotext.set_fontfamily('monospace')
    
    # Minimal category labels
    for text in texts:
        text.set_color(LABEL_COLOR)
        text.set_weight('normal')
        text.set_fontsize(13)
        text.set_fontfamily('monospace')
    
    # Device label closer to chart and bigger
    ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal', 
                pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')


def plot_model_stats(df: pd.DataFrame, model_name: str) -> tuple[plt.Figure, str, str]:
    """Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA."""
    # Handle case where the dataframe is empty or the model name could not be found in it
    if df.empty or model_name not in df.index:
        # Create empty stats for both devices
        amd_filtered = {}
        nvidia_filtered = {}
        failed_multi_amd = failed_single_amd = failed_multi_nvidia = failed_single_nvidia = 0
        failures_amd = failures_nvidia = {}
    else:
        row = df.loc[model_name]
        
        # Extract and process model data
        amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia = \
            extract_model_data(row)
        
        # Filter out categories with 0 values for cleaner visualization
        amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
        nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
        
        # Generate failure info directly from dataframe
        failures_amd = row.get('failures_amd', {})
        failures_nvidia = row.get('failures_nvidia', {})
    
    # Always create figure with two subplots side by side with padding
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK)
    ax1.set_facecolor(BLACK)
    ax2.set_facecolor(BLACK)
    
    # Create both pie charts with device labels
    _create_pie_chart(ax1, "amd", amd_filtered)
    _create_pie_chart(ax2, "nvidia", nvidia_filtered)
    
    # Add subtle separation line between charts - stops at device labels level
    line_x = 0.5
    fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END], 
                              color='#333333', linewidth=SEPARATOR_LINE_WIDTH, 
                              alpha=SEPARATOR_ALPHA, transform=fig.transFigure))
    
    # Add central shared title for model name
    fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold', 
                color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y)
    
    # Clean layout with padding and space for central title
    plt.tight_layout()
    plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE)
    
    amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
    nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
    
    return fig, amd_failed_info, nvidia_failed_info