Spaces:
Running
Running
Refactor of model page
Browse files- app.py +7 -213
- model_page.py +216 -0
app.py
CHANGED
@@ -2,11 +2,12 @@ import matplotlib.pyplot as plt
|
|
2 |
import matplotlib
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
-
import threading
|
6 |
|
7 |
from data import CIResults
|
8 |
-
from utils import logger
|
9 |
from summary_page import create_summary_page
|
|
|
|
|
10 |
|
11 |
# Configure matplotlib to prevent memory warnings and set dark background
|
12 |
matplotlib.rcParams['figure.facecolor'] = '#000000'
|
@@ -22,216 +23,6 @@ Ci_results.load_data()
|
|
22 |
Ci_results.schedule_data_reload()
|
23 |
|
24 |
|
25 |
-
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
|
26 |
-
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
|
27 |
-
if Ci_results.df.empty or model_name not in Ci_results.df.index:
|
28 |
-
# Handle case where model data is not available
|
29 |
-
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
|
30 |
-
ax.set_facecolor('#000000')
|
31 |
-
ax.text(0.5, 0.5, f'No data available for {model_name}',
|
32 |
-
horizontalalignment='center', verticalalignment='center',
|
33 |
-
transform=ax.transAxes, fontsize=16, color='#888888',
|
34 |
-
fontfamily='monospace', weight='normal')
|
35 |
-
ax.set_xlim(0, 1)
|
36 |
-
ax.set_ylim(0, 1)
|
37 |
-
ax.axis('off')
|
38 |
-
return fig, "No data available", "No data available"
|
39 |
-
|
40 |
-
row = Ci_results.df.loc[model_name]
|
41 |
-
|
42 |
-
# Handle missing values and get counts directly from dataframe
|
43 |
-
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
|
44 |
-
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
|
45 |
-
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
|
46 |
-
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
|
47 |
-
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
|
48 |
-
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
|
49 |
-
|
50 |
-
# Calculate total failures
|
51 |
-
total_failed_amd = failed_multi_amd + failed_single_amd
|
52 |
-
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
|
53 |
-
|
54 |
-
# Softer color palette - less pastel, more vibrant
|
55 |
-
colors = {
|
56 |
-
'passed': '#4CAF50', # Medium green
|
57 |
-
'failed': '#E53E3E', # More red
|
58 |
-
'skipped': '#FFD54F', # Medium yellow
|
59 |
-
'error': '#8B0000' # Dark red
|
60 |
-
}
|
61 |
-
|
62 |
-
# Create stats dictionaries directly from dataframe values
|
63 |
-
amd_stats = {
|
64 |
-
'passed': success_amd,
|
65 |
-
'failed': total_failed_amd,
|
66 |
-
'skipped': 0, # Not available in this dataset
|
67 |
-
'error': 0 # Not available in this dataset
|
68 |
-
}
|
69 |
-
|
70 |
-
nvidia_stats = {
|
71 |
-
'passed': success_nvidia,
|
72 |
-
'failed': total_failed_nvidia,
|
73 |
-
'skipped': 0, # Not available in this dataset
|
74 |
-
'error': 0 # Not available in this dataset
|
75 |
-
}
|
76 |
-
|
77 |
-
# Filter out categories with 0 values for cleaner visualization
|
78 |
-
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
|
79 |
-
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
|
80 |
-
|
81 |
-
if not amd_filtered and not nvidia_filtered:
|
82 |
-
# Handle case where all values are 0 - minimal empty state
|
83 |
-
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
|
84 |
-
ax.set_facecolor('#000000')
|
85 |
-
ax.text(0.5, 0.5, 'No test results available',
|
86 |
-
horizontalalignment='center', verticalalignment='center',
|
87 |
-
transform=ax.transAxes, fontsize=16, color='#888888',
|
88 |
-
fontfamily='monospace', weight='normal')
|
89 |
-
ax.set_xlim(0, 1)
|
90 |
-
ax.set_ylim(0, 1)
|
91 |
-
ax.axis('off')
|
92 |
-
return fig, "", ""
|
93 |
-
|
94 |
-
# Create figure with two subplots side by side with padding
|
95 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
|
96 |
-
ax1.set_facecolor('#000000')
|
97 |
-
ax2.set_facecolor('#000000')
|
98 |
-
|
99 |
-
def create_pie_chart(ax, device_label, filtered_stats):
|
100 |
-
if not filtered_stats:
|
101 |
-
ax.text(0.5, 0.5, 'No test results',
|
102 |
-
horizontalalignment='center', verticalalignment='center',
|
103 |
-
transform=ax.transAxes, fontsize=14, color='#888888',
|
104 |
-
fontfamily='monospace', weight='normal')
|
105 |
-
ax.set_title(device_label,
|
106 |
-
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
|
107 |
-
fontfamily='monospace')
|
108 |
-
ax.axis('off')
|
109 |
-
return
|
110 |
-
|
111 |
-
chart_colors = [colors[category] for category in filtered_stats.keys()]
|
112 |
-
|
113 |
-
# Create minimal pie chart - full pie, no donut effect
|
114 |
-
wedges, texts, autotexts = ax.pie(
|
115 |
-
filtered_stats.values(),
|
116 |
-
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
|
117 |
-
colors=chart_colors,
|
118 |
-
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
|
119 |
-
startangle=90,
|
120 |
-
explode=None, # No separation
|
121 |
-
shadow=False,
|
122 |
-
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
|
123 |
-
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
|
124 |
-
)
|
125 |
-
|
126 |
-
# Enhanced percentage text styling for better readability
|
127 |
-
for autotext in autotexts:
|
128 |
-
autotext.set_color('#000000') # Black text for better contrast
|
129 |
-
autotext.set_weight('bold')
|
130 |
-
autotext.set_fontsize(14)
|
131 |
-
autotext.set_fontfamily('monospace')
|
132 |
-
|
133 |
-
# Minimal category labels
|
134 |
-
for text in texts:
|
135 |
-
text.set_color('#AAAAAA')
|
136 |
-
text.set_weight('normal')
|
137 |
-
text.set_fontsize(13)
|
138 |
-
text.set_fontfamily('monospace')
|
139 |
-
|
140 |
-
# Device label closer to chart and bigger
|
141 |
-
ax.set_title(device_label,
|
142 |
-
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
|
143 |
-
fontfamily='monospace')
|
144 |
-
|
145 |
-
# Create both pie charts with device labels
|
146 |
-
create_pie_chart(ax1, "amd", amd_filtered)
|
147 |
-
create_pie_chart(ax2, "nvidia", nvidia_filtered)
|
148 |
-
|
149 |
-
# Add subtle separation line between charts - stops at device labels level
|
150 |
-
line_x = 0.5
|
151 |
-
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
|
152 |
-
color='#333333', linewidth=1, alpha=0.5,
|
153 |
-
transform=fig.transFigure))
|
154 |
-
|
155 |
-
# Add central shared title for model name
|
156 |
-
fig.suptitle(f'{model_name.lower()}',
|
157 |
-
fontsize=32, weight='bold', color='#CCCCCC',
|
158 |
-
fontfamily='monospace', y=1)
|
159 |
-
|
160 |
-
# Clean layout with padding and space for central title
|
161 |
-
plt.tight_layout()
|
162 |
-
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
|
163 |
-
|
164 |
-
# Generate failure info directly from dataframe
|
165 |
-
failures_amd = row.get('failures_amd', {})
|
166 |
-
failures_nvidia = row.get('failures_nvidia', {})
|
167 |
-
|
168 |
-
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
|
169 |
-
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
|
170 |
-
|
171 |
-
return fig, amd_failed_info, nvidia_failed_info
|
172 |
-
|
173 |
-
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
|
174 |
-
"""Extract failure information from failures object."""
|
175 |
-
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
|
176 |
-
return f"No failures on {device}"
|
177 |
-
|
178 |
-
info_lines = []
|
179 |
-
|
180 |
-
# Add counts summary
|
181 |
-
if multi_count > 0 or single_count > 0:
|
182 |
-
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
|
183 |
-
if multi_count > 0:
|
184 |
-
info_lines.append(f"Multi GPU failures: {multi_count}")
|
185 |
-
if single_count > 0:
|
186 |
-
info_lines.append(f"Single GPU failures: {single_count}")
|
187 |
-
info_lines.append("")
|
188 |
-
|
189 |
-
# Try to extract detailed failure information
|
190 |
-
try:
|
191 |
-
if isinstance(failures_obj, dict):
|
192 |
-
# Check for multi and single failure categories
|
193 |
-
if 'multi' in failures_obj and failures_obj['multi']:
|
194 |
-
info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
|
195 |
-
if isinstance(failures_obj['multi'], list):
|
196 |
-
# Handle list of failures (could be strings or dicts)
|
197 |
-
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10
|
198 |
-
if isinstance(failure, dict):
|
199 |
-
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
200 |
-
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
201 |
-
info_lines.append(f" {i+1}. {failure_str}")
|
202 |
-
else:
|
203 |
-
info_lines.append(f" {i+1}. {str(failure)}")
|
204 |
-
if len(failures_obj['multi']) > 10:
|
205 |
-
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
|
206 |
-
else:
|
207 |
-
info_lines.append(str(failures_obj['multi']))
|
208 |
-
info_lines.append("")
|
209 |
-
|
210 |
-
if 'single' in failures_obj and failures_obj['single']:
|
211 |
-
info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
|
212 |
-
if isinstance(failures_obj['single'], list):
|
213 |
-
# Handle list of failures (could be strings or dicts)
|
214 |
-
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10
|
215 |
-
if isinstance(failure, dict):
|
216 |
-
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
217 |
-
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
218 |
-
info_lines.append(f" {i+1}. {failure_str}")
|
219 |
-
else:
|
220 |
-
info_lines.append(f" {i+1}. {str(failure)}")
|
221 |
-
if len(failures_obj['single']) > 10:
|
222 |
-
info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
|
223 |
-
else:
|
224 |
-
info_lines.append(str(failures_obj['single']))
|
225 |
-
|
226 |
-
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
|
227 |
-
|
228 |
-
except Exception as e:
|
229 |
-
if multi_count > 0 or single_count > 0:
|
230 |
-
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
|
231 |
-
return f"Error processing failure info for {device}: {str(e)}"
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
# Load CSS from external file
|
236 |
def load_css():
|
237 |
try:
|
@@ -241,6 +32,7 @@ def load_css():
|
|
241 |
logger.warning("styles.css not found, using minimal default styles")
|
242 |
return "body { background: #000; color: #fff; }"
|
243 |
|
|
|
244 |
# Create the Gradio interface with sidebar and dark theme
|
245 |
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
246 |
|
@@ -331,7 +123,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
331 |
for i, btn in enumerate(model_buttons):
|
332 |
model_name = model_choices[i]
|
333 |
btn.click(
|
334 |
-
fn=lambda selected_model=model_name: plot_model_stats(selected_model),
|
335 |
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
336 |
).then(
|
337 |
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
@@ -432,5 +224,7 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
432 |
outputs=[ci_links_display]
|
433 |
)
|
434 |
|
|
|
|
|
435 |
if __name__ == "__main__":
|
436 |
demo.launch()
|
|
|
2 |
import matplotlib
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
from data import CIResults
|
7 |
+
from utils import logger
|
8 |
from summary_page import create_summary_page
|
9 |
+
from model_page import plot_model_stats
|
10 |
+
|
11 |
|
12 |
# Configure matplotlib to prevent memory warnings and set dark background
|
13 |
matplotlib.rcParams['figure.facecolor'] = '#000000'
|
|
|
23 |
Ci_results.schedule_data_reload()
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Load CSS from external file
|
27 |
def load_css():
|
28 |
try:
|
|
|
32 |
logger.warning("styles.css not found, using minimal default styles")
|
33 |
return "body { background: #000; color: #fff; }"
|
34 |
|
35 |
+
|
36 |
# Create the Gradio interface with sidebar and dark theme
|
37 |
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
38 |
|
|
|
123 |
for i, btn in enumerate(model_buttons):
|
124 |
model_name = model_choices[i]
|
125 |
btn.click(
|
126 |
+
fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
|
127 |
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
128 |
).then(
|
129 |
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
|
|
224 |
outputs=[ci_links_display]
|
225 |
)
|
226 |
|
227 |
+
|
228 |
+
# Gradio entrypoint
|
229 |
if __name__ == "__main__":
|
230 |
demo.launch()
|
model_page.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import pandas as pd
|
3 |
+
from utils import generate_underlined_line
|
4 |
+
|
5 |
+
|
6 |
+
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
|
7 |
+
"""Extract failure information from failures object."""
|
8 |
+
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
|
9 |
+
return f"No failures on {device}"
|
10 |
+
|
11 |
+
info_lines = []
|
12 |
+
|
13 |
+
# Add counts summary
|
14 |
+
if multi_count > 0 or single_count > 0:
|
15 |
+
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
|
16 |
+
if multi_count > 0:
|
17 |
+
info_lines.append(f"Multi GPU failures: {multi_count}")
|
18 |
+
if single_count > 0:
|
19 |
+
info_lines.append(f"Single GPU failures: {single_count}")
|
20 |
+
info_lines.append("")
|
21 |
+
|
22 |
+
# Try to extract detailed failure information
|
23 |
+
try:
|
24 |
+
if isinstance(failures_obj, dict):
|
25 |
+
# Check for multi and single failure categories
|
26 |
+
if 'multi' in failures_obj and failures_obj['multi']:
|
27 |
+
info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
|
28 |
+
if isinstance(failures_obj['multi'], list):
|
29 |
+
# Handle list of failures (could be strings or dicts)
|
30 |
+
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10
|
31 |
+
if isinstance(failure, dict):
|
32 |
+
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
33 |
+
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
34 |
+
info_lines.append(f" {i+1}. {failure_str}")
|
35 |
+
else:
|
36 |
+
info_lines.append(f" {i+1}. {str(failure)}")
|
37 |
+
if len(failures_obj['multi']) > 10:
|
38 |
+
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
|
39 |
+
else:
|
40 |
+
info_lines.append(str(failures_obj['multi']))
|
41 |
+
info_lines.append("")
|
42 |
+
|
43 |
+
if 'single' in failures_obj and failures_obj['single']:
|
44 |
+
info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
|
45 |
+
if isinstance(failures_obj['single'], list):
|
46 |
+
# Handle list of failures (could be strings or dicts)
|
47 |
+
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10
|
48 |
+
if isinstance(failure, dict):
|
49 |
+
# Extract meaningful info from dict (e.g., test name, line, etc.)
|
50 |
+
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
|
51 |
+
info_lines.append(f" {i+1}. {failure_str}")
|
52 |
+
else:
|
53 |
+
info_lines.append(f" {i+1}. {str(failure)}")
|
54 |
+
if len(failures_obj['single']) > 10:
|
55 |
+
info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
|
56 |
+
else:
|
57 |
+
info_lines.append(str(failures_obj['single']))
|
58 |
+
|
59 |
+
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
if multi_count > 0 or single_count > 0:
|
63 |
+
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
|
64 |
+
return f"Error processing failure info for {device}: {str(e)}"
|
65 |
+
|
66 |
+
|
67 |
+
def plot_model_stats(
|
68 |
+
df: pd.DataFrame,
|
69 |
+
model_name: str,
|
70 |
+
) -> tuple[plt.Figure, str, str]:
|
71 |
+
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
|
72 |
+
if df.empty or model_name not in df.index:
|
73 |
+
# Handle case where model data is not available
|
74 |
+
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
|
75 |
+
ax.set_facecolor('#000000')
|
76 |
+
ax.text(0.5, 0.5, f'No data available for {model_name}',
|
77 |
+
horizontalalignment='center', verticalalignment='center',
|
78 |
+
transform=ax.transAxes, fontsize=16, color='#888888',
|
79 |
+
fontfamily='monospace', weight='normal')
|
80 |
+
ax.set_xlim(0, 1)
|
81 |
+
ax.set_ylim(0, 1)
|
82 |
+
ax.axis('off')
|
83 |
+
return fig, "No data available", "No data available"
|
84 |
+
|
85 |
+
row = df.loc[model_name]
|
86 |
+
|
87 |
+
# Handle missing values and get counts directly from dataframe
|
88 |
+
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
|
89 |
+
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
|
90 |
+
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
|
91 |
+
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
|
92 |
+
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
|
93 |
+
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
|
94 |
+
|
95 |
+
# Calculate total failures
|
96 |
+
total_failed_amd = failed_multi_amd + failed_single_amd
|
97 |
+
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
|
98 |
+
|
99 |
+
# Softer color palette - less pastel, more vibrant
|
100 |
+
colors = {
|
101 |
+
'passed': '#4CAF50', # Medium green
|
102 |
+
'failed': '#E53E3E', # More red
|
103 |
+
'skipped': '#FFD54F', # Medium yellow
|
104 |
+
'error': '#8B0000' # Dark red
|
105 |
+
}
|
106 |
+
|
107 |
+
# Create stats dictionaries directly from dataframe values
|
108 |
+
amd_stats = {
|
109 |
+
'passed': success_amd,
|
110 |
+
'failed': total_failed_amd,
|
111 |
+
'skipped': 0, # Not available in this dataset
|
112 |
+
'error': 0 # Not available in this dataset
|
113 |
+
}
|
114 |
+
|
115 |
+
nvidia_stats = {
|
116 |
+
'passed': success_nvidia,
|
117 |
+
'failed': total_failed_nvidia,
|
118 |
+
'skipped': 0, # Not available in this dataset
|
119 |
+
'error': 0 # Not available in this dataset
|
120 |
+
}
|
121 |
+
|
122 |
+
# Filter out categories with 0 values for cleaner visualization
|
123 |
+
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
|
124 |
+
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
|
125 |
+
|
126 |
+
if not amd_filtered and not nvidia_filtered:
|
127 |
+
# Handle case where all values are 0 - minimal empty state
|
128 |
+
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
|
129 |
+
ax.set_facecolor('#000000')
|
130 |
+
ax.text(0.5, 0.5, 'No test results available',
|
131 |
+
horizontalalignment='center', verticalalignment='center',
|
132 |
+
transform=ax.transAxes, fontsize=16, color='#888888',
|
133 |
+
fontfamily='monospace', weight='normal')
|
134 |
+
ax.set_xlim(0, 1)
|
135 |
+
ax.set_ylim(0, 1)
|
136 |
+
ax.axis('off')
|
137 |
+
return fig, "", ""
|
138 |
+
|
139 |
+
# Create figure with two subplots side by side with padding
|
140 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
|
141 |
+
ax1.set_facecolor('#000000')
|
142 |
+
ax2.set_facecolor('#000000')
|
143 |
+
|
144 |
+
def create_pie_chart(ax, device_label, filtered_stats):
|
145 |
+
if not filtered_stats:
|
146 |
+
ax.text(0.5, 0.5, 'No test results',
|
147 |
+
horizontalalignment='center', verticalalignment='center',
|
148 |
+
transform=ax.transAxes, fontsize=14, color='#888888',
|
149 |
+
fontfamily='monospace', weight='normal')
|
150 |
+
ax.set_title(device_label,
|
151 |
+
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
|
152 |
+
fontfamily='monospace')
|
153 |
+
ax.axis('off')
|
154 |
+
return
|
155 |
+
|
156 |
+
chart_colors = [colors[category] for category in filtered_stats.keys()]
|
157 |
+
|
158 |
+
# Create minimal pie chart - full pie, no donut effect
|
159 |
+
wedges, texts, autotexts = ax.pie(
|
160 |
+
filtered_stats.values(),
|
161 |
+
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
|
162 |
+
colors=chart_colors,
|
163 |
+
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
|
164 |
+
startangle=90,
|
165 |
+
explode=None, # No separation
|
166 |
+
shadow=False,
|
167 |
+
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
|
168 |
+
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
|
169 |
+
)
|
170 |
+
|
171 |
+
# Enhanced percentage text styling for better readability
|
172 |
+
for autotext in autotexts:
|
173 |
+
autotext.set_color('#000000') # Black text for better contrast
|
174 |
+
autotext.set_weight('bold')
|
175 |
+
autotext.set_fontsize(14)
|
176 |
+
autotext.set_fontfamily('monospace')
|
177 |
+
|
178 |
+
# Minimal category labels
|
179 |
+
for text in texts:
|
180 |
+
text.set_color('#AAAAAA')
|
181 |
+
text.set_weight('normal')
|
182 |
+
text.set_fontsize(13)
|
183 |
+
text.set_fontfamily('monospace')
|
184 |
+
|
185 |
+
# Device label closer to chart and bigger
|
186 |
+
ax.set_title(device_label,
|
187 |
+
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
|
188 |
+
fontfamily='monospace')
|
189 |
+
|
190 |
+
# Create both pie charts with device labels
|
191 |
+
create_pie_chart(ax1, "amd", amd_filtered)
|
192 |
+
create_pie_chart(ax2, "nvidia", nvidia_filtered)
|
193 |
+
|
194 |
+
# Add subtle separation line between charts - stops at device labels level
|
195 |
+
line_x = 0.5
|
196 |
+
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
|
197 |
+
color='#333333', linewidth=1, alpha=0.5,
|
198 |
+
transform=fig.transFigure))
|
199 |
+
|
200 |
+
# Add central shared title for model name
|
201 |
+
fig.suptitle(f'{model_name.lower()}',
|
202 |
+
fontsize=32, weight='bold', color='#CCCCCC',
|
203 |
+
fontfamily='monospace', y=1)
|
204 |
+
|
205 |
+
# Clean layout with padding and space for central title
|
206 |
+
plt.tight_layout()
|
207 |
+
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
|
208 |
+
|
209 |
+
# Generate failure info directly from dataframe
|
210 |
+
failures_amd = row.get('failures_amd', {})
|
211 |
+
failures_nvidia = row.get('failures_nvidia', {})
|
212 |
+
|
213 |
+
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
|
214 |
+
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
|
215 |
+
|
216 |
+
return fig, amd_failed_info, nvidia_failed_info
|