File size: 9,441 Bytes
49fffdb
c7954ca
f1667dd
57be256
f1667dd
 
ef39cc6
f1667dd
ef39cc6
 
57be256
c7954ca
 
c1a3d27
c7954ca
 
 
57be256
f1667dd
 
 
 
 
49fffdb
c7954ca
f1667dd
 
 
 
 
 
 
 
065764c
ef39cc6
065764c
f1667dd
c1a3d27
065764c
c1a3d27
065764c
f1667dd
c1a3d27
f1667dd
 
 
 
 
 
c1a3d27
c95a637
 
c1a3d27
c95a637
 
a8d2652
c95a637
c1a3d27
f1667dd
 
c1a3d27
f1667dd
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
 
 
 
c1a3d27
f1667dd
 
c1a3d27
065764c
 
c95a637
 
f1667dd
c1a3d27
065764c
c95a637
 
065764c
c1a3d27
c95a637
 
c1a3d27
c95a637
 
c1a3d27
c95a637
 
 
c1a3d27
c95a637
 
 
 
f1667dd
c95a637
 
 
 
 
 
 
 
f1667dd
c95a637
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
ef39cc6
4989641
c95a637
 
 
065764c
c1a3d27
c95a637
f1667dd
 
 
c1a3d27
c95a637
f1667dd
 
c95a637
 
 
065764c
c1a3d27
f1667dd
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
c1a3d27
f1667dd
 
c1a3d27
f1667dd
 
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
c1a3d27
f1667dd
c1a3d27
f1667dd
 
 
 
 
 
 
 
c1a3d27
f1667dd
 
 
 
 
 
 
c1a3d27
f1667dd
 
c1a3d27
f1667dd
 
 
 
c1a3d27
f1667dd
 
 
 
 
 
49fffdb
ef39cc6
 
49fffdb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import gradio as gr

from data import CIResults
from utils import logger
from summary_page import create_summary_page
from model_page import plot_model_stats


# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff()  # Turn off interactive mode to prevent figure accumulation


# Load data once at startup
Ci_results = CIResults()
Ci_results.load_data()
# Start the auto-reload scheduler
Ci_results.schedule_data_reload()


# Load CSS from external file
def load_css():
    try:
        with open("styles.css", "r") as f:
            return f.read()
    except FileNotFoundError:
        logger.warning("styles.css not found, using minimal default styles")
        return "body { background: #000; color: #fff; }"


# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:

    with gr.Row():
        # Sidebar for model selection
        with gr.Column(scale=1, elem_classes=["sidebar"]):
            gr.Markdown("# πŸ€– TCID", elem_classes=["sidebar-title"])

            # Description with integrated last update time
            if Ci_results.last_update_time:
                description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
            else:
                description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
            description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])

            # Summary button at the top
            summary_button = gr.Button(
                "summary\nπŸ“Š",
                variant="primary",
                size="lg",
                elem_classes=["summary-button"]
            )

            # Model selection header
            gr.Markdown(f"**Select model ({len(Ci_results.available_models)}):**", elem_classes=["model-header"])

            # Scrollable container for model buttons
            with gr.Column(scale=1, elem_classes=["model-container"]):
                # Create individual buttons for each model
                model_buttons = []
                model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"]

                for model_name in model_choices:
                    btn = gr.Button(
                        model_name,
                        variant="secondary",
                        size="sm",
                        elem_classes=["model-button"]
                    )
                    model_buttons.append(btn)

            # CI job links at bottom of sidebar
            ci_links_display = gr.Markdown("πŸ”— **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"])

        # Main content area
        with gr.Column(scale=4, elem_classes=["main-content"]):
            # Summary display (default view)
            summary_display = gr.Plot(
                value=create_summary_page(Ci_results.df, Ci_results.available_models),
                label="",
                format="png",
                elem_classes=["plot-container"],
                visible=True
            )

            # Detailed view components (hidden by default)
            with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:

                # Create the plot output
                plot_output = gr.Plot(
                    label="",
                    format="png",
                    elem_classes=["plot-container"]
                )

                # Create two separate failed tests displays in a row layout
                with gr.Row():
                    with gr.Column(scale=1):
                        amd_failed_tests_output = gr.Textbox(
                            value="",
                            lines=8,
                            max_lines=8,
                            interactive=False,
                            container=False,
                            elem_classes=["failed-tests"]
                        )
                    with gr.Column(scale=1):
                        nvidia_failed_tests_output = gr.Textbox(
                            value="",
                            lines=8,
                            max_lines=8,
                            interactive=False,
                            container=False,
                            elem_classes=["failed-tests"]
                        )

    # Set up click handlers for model buttons
    for i, btn in enumerate(model_buttons):
        model_name = model_choices[i]
        btn.click(
            fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
            outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
        ).then(
            fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
            outputs=[summary_display, detail_view]
        )

    # Summary button click handler
    def show_summary_and_update_links():
        """Show summary page and update CI links."""
        return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links()

    summary_button.click(
        fn=show_summary_and_update_links,
        outputs=[summary_display, description_display, ci_links_display]
    ).then(
        fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
        outputs=[summary_display, detail_view]
    )

    # Function to get current description text
    def get_description_text():
        """Get description text with integrated last update time."""
        if Ci_results.last_update_time:
            return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
        else:
            return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"

    # Function to get CI job links
    def get_ci_links():
        """Get CI job links from the most recent data."""
        try:
            # Check if df exists and is not empty
            if Ci_results.df is None or Ci_results.df.empty:
                return "πŸ”— **CI Jobs:** *Loading...*"

            # Get links from any available model (they should be the same for all models in a run)
            amd_multi_link = None
            amd_single_link = None
            nvidia_multi_link = None
            nvidia_single_link = None

            for model_name in Ci_results.df.index:
                row = Ci_results.df.loc[model_name]

                # Extract AMD links
                if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
                    amd_link_raw = row.get('job_link_amd')
                    if isinstance(amd_link_raw, dict):
                        if 'multi' in amd_link_raw and not amd_multi_link:
                            amd_multi_link = amd_link_raw['multi']
                        if 'single' in amd_link_raw and not amd_single_link:
                            amd_single_link = amd_link_raw['single']

                # Extract NVIDIA links
                if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
                    nvidia_link_raw = row.get('job_link_nvidia')
                    if isinstance(nvidia_link_raw, dict):
                        if 'multi' in nvidia_link_raw and not nvidia_multi_link:
                            nvidia_multi_link = nvidia_link_raw['multi']
                        if 'single' in nvidia_link_raw and not nvidia_single_link:
                            nvidia_single_link = nvidia_link_raw['single']

                # Break if we have all links
                if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
                    break

            links_md = "πŸ”— **CI Jobs:**\n\n"

            # AMD links
            if amd_multi_link or amd_single_link:
                links_md += "**AMD:**\n"
                if amd_multi_link:
                    links_md += f"β€’ [Multi GPU]({amd_multi_link})\n"
                if amd_single_link:
                    links_md += f"β€’ [Single GPU]({amd_single_link})\n"
                links_md += "\n"

            # NVIDIA links
            if nvidia_multi_link or nvidia_single_link:
                links_md += "**NVIDIA:**\n"
                if nvidia_multi_link:
                    links_md += f"β€’ [Multi GPU]({nvidia_multi_link})\n"
                if nvidia_single_link:
                    links_md += f"β€’ [Single GPU]({nvidia_single_link})\n"

            if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
                links_md += "*No links available*"

            return links_md
        except Exception as e:
            logger.error(f"getting CI links: {e}")
            return "πŸ”— **CI Jobs:** *Error loading links*"


    # Auto-update CI links when the interface loads
    demo.load(
        fn=get_ci_links,
        outputs=[ci_links_display]
    )


# Gradio entrypoint
if __name__ == "__main__":
    demo.launch()