File size: 20,004 Bytes
49fffdb
c7954ca
2018d03
57be256
2018d03
64fcb68
 
 
 
57be256
c7954ca
 
 
 
 
 
57be256
2018d03
64fcb68
 
2018d03
64fcb68
49fffdb
c7954ca
4989641
49fffdb
64fcb68
2018d03
 
 
 
 
 
 
 
 
 
 
 
64fcb68
2018d03
 
 
 
 
 
 
 
 
 
 
 
065764c
1afbdec
065764c
1afbdec
 
 
 
065764c
 
2018d03
 
 
 
 
 
 
 
 
 
 
 
 
 
4989641
065764c
4989641
 
065764c
4989641
1afbdec
065764c
 
 
 
1afbdec
 
065764c
 
 
4989641
065764c
1afbdec
 
 
 
065764c
4989641
 
 
 
 
 
 
 
 
 
 
 
 
 
1afbdec
 
 
 
 
2c2d476
1afbdec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7954ca
1afbdec
 
 
4989641
 
065764c
2c2d476
1afbdec
2c2d476
1afbdec
 
065764c
2c2d476
 
c7954ca
ab88628
065764c
1afbdec
065764c
1afbdec
065764c
2018d03
 
 
 
 
 
4989641
 
49fffdb
2018d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afbdec
64fcb68
c95a637
2018d03
 
 
 
 
 
64fcb68
2018d03
065764c
 
2018d03
065764c
 
2018d03
065764c
a899859
2018d03
9ec4a51
64fcb68
9ec4a51
2018d03
9ec4a51
a899859
065764c
c95a637
 
a8d2652
c95a637
 
a8d2652
c95a637
 
a899859
881ab65
2018d03
a899859
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec4a51
 
a899859
065764c
 
 
c95a637
 
64fcb68
065764c
 
c95a637
 
065764c
4989641
c95a637
 
 
 
 
 
 
 
 
 
 
 
 
 
2018d03
c95a637
 
 
 
 
 
 
 
2018d03
c95a637
 
 
 
 
 
065764c
a899859
 
 
 
 
 
 
 
 
 
065764c
c95a637
2018d03
 
9ec4a51
2018d03
c95a637
2018d03
9ec4a51
2018d03
 
 
 
 
9ec4a51
 
 
64fcb68
9ec4a51
2018d03
9ec4a51
2018d03
 
 
 
 
 
64fcb68
2018d03
 
 
 
 
 
 
 
64fcb68
 
2018d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fcb68
2018d03
 
49fffdb
2018d03
 
 
 
 
 
49fffdb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import gradio as gr
import threading

from data import CIResults
from utils import logger, generate_underlined_line
from summary_page import create_summary_page

# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000' 
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff()  # Turn off interactive mode to prevent figure accumulation


# Load data once at startup
Ci_results = CIResults()
Ci_results.load_data()
# Start the auto-reload scheduler
Ci_results.schedule_data_reload()


def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
    """Draws a pie chart of model's passed, failed, skipped, and error stats."""
    if Ci_results.df.empty or model_name not in Ci_results.df.index:
        # Handle case where model data is not available
        fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
        ax.set_facecolor('#000000')
        ax.text(0.5, 0.5, f'No data available for {model_name}', 
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=16, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.axis('off')
        return fig, "No data available", "No data available"
    
    row = Ci_results.df.loc[model_name]
    
    # Handle missing values and get counts directly from dataframe
    success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
    success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
    failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
    failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
    failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
    failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
    
    # Calculate total failures
    total_failed_amd = failed_multi_amd + failed_single_amd
    total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
    
    # Softer color palette - less pastel, more vibrant
    colors = {
        'passed': '#4CAF50',    # Medium green
        'failed': '#E53E3E',    # More red
        'skipped': '#FFD54F',   # Medium yellow
        'error': '#8B0000'      # Dark red
    }
    
    # Create stats dictionaries directly from dataframe values
    amd_stats = {
        'passed': success_amd,
        'failed': total_failed_amd,
        'skipped': 0,  # Not available in this dataset
        'error': 0     # Not available in this dataset
    }
    
    nvidia_stats = {
        'passed': success_nvidia,
        'failed': total_failed_nvidia,
        'skipped': 0,  # Not available in this dataset
        'error': 0     # Not available in this dataset
    }
    
    # Filter out categories with 0 values for cleaner visualization
    amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
    nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
    
    if not amd_filtered and not nvidia_filtered:
        # Handle case where all values are 0 - minimal empty state
        fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
        ax.set_facecolor('#000000')
        ax.text(0.5, 0.5, 'No test results available', 
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=16, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.set_xlim(0, 1)
        ax.set_ylim(0, 1)
        ax.axis('off')
        return fig, "", ""
    
    # Create figure with two subplots side by side with padding
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
    ax1.set_facecolor('#000000')
    ax2.set_facecolor('#000000')
    
    def create_pie_chart(ax, device_label, filtered_stats):
        if not filtered_stats:
            ax.text(0.5, 0.5, 'No test results', 
                   horizontalalignment='center', verticalalignment='center',
                   transform=ax.transAxes, fontsize=14, color='#888888',
                   fontfamily='monospace', weight='normal')
            ax.set_title(device_label, 
                        fontsize=28, weight='bold', pad=2, color='#FFFFFF', 
                        fontfamily='monospace')
            ax.axis('off')
            return
            
        chart_colors = [colors[category] for category in filtered_stats.keys()]
        
        # Create minimal pie chart - full pie, no donut effect
        wedges, texts, autotexts = ax.pie(
            filtered_stats.values(), 
            labels=[label.lower() for label in filtered_stats.keys()],  # Lowercase for minimal look
            colors=chart_colors,
            autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
            startangle=90,
            explode=None,  # No separation
            shadow=False,
            wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5),  # Minimal borders
            textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
        )
        
        # Enhanced percentage text styling for better readability
        for autotext in autotexts:
            autotext.set_color('#000000')  # Black text for better contrast
            autotext.set_weight('bold')
            autotext.set_fontsize(14)
            autotext.set_fontfamily('monospace')
        
        # Minimal category labels
        for text in texts:
            text.set_color('#AAAAAA')
            text.set_weight('normal')
            text.set_fontsize(13)
            text.set_fontfamily('monospace')
        
        # Device label closer to chart and bigger
        ax.set_title(device_label, 
                    fontsize=28, weight='normal', pad=2, color='#FFFFFF', 
                    fontfamily='monospace')
    
    # Create both pie charts with device labels
    create_pie_chart(ax1, "amd", amd_filtered)
    create_pie_chart(ax2, "nvidia", nvidia_filtered)
    
    # Add subtle separation line between charts - stops at device labels level
    line_x = 0.5
    fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85], 
                              color='#333333', linewidth=1, alpha=0.5,
                              transform=fig.transFigure))
    
    # Add central shared title for model name
    fig.suptitle(f'{model_name.lower()}', 
                fontsize=32, weight='bold', color='#CCCCCC', 
                fontfamily='monospace', y=1)
    
    # Clean layout with padding and space for central title
    plt.tight_layout()
    plt.subplots_adjust(top=0.85, wspace=0.4)  # Added wspace for padding between charts
    
    # Generate failure info directly from dataframe
    failures_amd = row.get('failures_amd', {})
    failures_nvidia = row.get('failures_nvidia', {})
    
    amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
    nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
    
    return fig, amd_failed_info, nvidia_failed_info

def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
    """Extract failure information from failures object."""
    if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
        return f"No failures on {device}"
    
    info_lines = []
    
    # Add counts summary
    if multi_count > 0 or single_count > 0:
        info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
        if multi_count > 0:
            info_lines.append(f"Multi GPU failures: {multi_count}")
        if single_count > 0:
            info_lines.append(f"Single GPU failures: {single_count}")
        info_lines.append("")
    
    # Try to extract detailed failure information
    try:
        if isinstance(failures_obj, dict):
            # Check for multi and single failure categories
            if 'multi' in failures_obj and failures_obj['multi']:
                info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
                if isinstance(failures_obj['multi'], list):
                    # Handle list of failures (could be strings or dicts)
                    for i, failure in enumerate(failures_obj['multi'][:10]):  # Limit to first 10
                        if isinstance(failure, dict):
                            # Extract meaningful info from dict (e.g., test name, line, etc.)
                            failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
                            info_lines.append(f"  {i+1}. {failure_str}")
                        else:
                            info_lines.append(f"  {i+1}. {str(failure)}")
                    if len(failures_obj['multi']) > 10:
                        info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
                else:
                    info_lines.append(str(failures_obj['multi']))
                info_lines.append("")
            
            if 'single' in failures_obj and failures_obj['single']:
                info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
                if isinstance(failures_obj['single'], list):
                    # Handle list of failures (could be strings or dicts)
                    for i, failure in enumerate(failures_obj['single'][:10]):  # Limit to first 10
                        if isinstance(failure, dict):
                            # Extract meaningful info from dict (e.g., test name, line, etc.)
                            failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
                            info_lines.append(f"  {i+1}. {failure_str}")
                        else:
                            info_lines.append(f"  {i+1}. {str(failure)}")
                    if len(failures_obj['single']) > 10:
                        info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
                else:
                    info_lines.append(str(failures_obj['single']))
        
        return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
    
    except Exception as e:
        if multi_count > 0 or single_count > 0:
            return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
        return f"Error processing failure info for {device}: {str(e)}"



# Load CSS from external file
def load_css():
    try:
        with open("styles.css", "r") as f:
            return f.read()
    except FileNotFoundError:
        logger.warning("styles.css not found, using minimal default styles")
        return "body { background: #000; color: #fff; }"

# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
    
    with gr.Row():
        # Sidebar for model selection  
        with gr.Column(scale=1, elem_classes=["sidebar"]):
            gr.Markdown("# πŸ€– TCID", elem_classes=["sidebar-title"])
            
            # Description with integrated last update time
            if Ci_results.last_update_time:
                description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
            else:
                description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
            description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
            
            # Summary button at the top
            summary_button = gr.Button(
                "summary\nπŸ“Š", 
                variant="primary",
                size="lg",
                elem_classes=["summary-button"]
            )
            
            # Model selection header
            gr.Markdown(f"**Select model ({len(Ci_results.available_models)}):**", elem_classes=["model-header"])
            
            # Scrollable container for model buttons
            with gr.Column(scale=1, elem_classes=["model-container"]):
                # Create individual buttons for each model
                model_buttons = []
                model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"]
                
                for model_name in model_choices:
                    btn = gr.Button(
                        model_name,
                        variant="secondary",
                        size="sm",
                        elem_classes=["model-button"]
                    )
                    model_buttons.append(btn)
            
            # CI job links at bottom of sidebar
            ci_links_display = gr.Markdown("πŸ”— **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"])
        
        # Main content area
        with gr.Column(scale=4, elem_classes=["main-content"]):
            # Summary display (default view)
            summary_display = gr.Plot(
                value=create_summary_page(Ci_results.df, Ci_results.available_models),
                label="", 
                format="png",
                elem_classes=["plot-container"],
                visible=True
            )
            
            # Detailed view components (hidden by default)
            with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
                
                # Create the plot output
                plot_output = gr.Plot(
                    label="", 
                    format="png",
                    elem_classes=["plot-container"]
                )
                
                # Create two separate failed tests displays in a row layout
                with gr.Row():
                    with gr.Column(scale=1):
                        amd_failed_tests_output = gr.Textbox(
                            value="",
                            lines=8,
                            max_lines=8,
                            interactive=False,
                            container=False,
                            elem_classes=["failed-tests"]
                        )
                    with gr.Column(scale=1):
                        nvidia_failed_tests_output = gr.Textbox(
                            value="",
                            lines=8,
                            max_lines=8,
                            interactive=False,
                            container=False,
                            elem_classes=["failed-tests"]
                        )
    
    # Set up click handlers for model buttons
    for i, btn in enumerate(model_buttons):
        model_name = model_choices[i]
        btn.click(
            fn=lambda selected_model=model_name: plot_model_stats(selected_model),
            outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
        ).then(
            fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
            outputs=[summary_display, detail_view]
        )
    
    # Summary button click handler
    def show_summary_and_update_links():
        """Show summary page and update CI links."""
        return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links()
    
    summary_button.click(
        fn=show_summary_and_update_links,
        outputs=[summary_display, description_display, ci_links_display]
    ).then(
        fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
        outputs=[summary_display, detail_view]
    )
    
    # Function to get current description text
    def get_description_text():
        """Get description text with integrated last update time."""
        if Ci_results.last_update_time:
            return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
        else:
            return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
    
    # Function to get CI job links
    def get_ci_links():
        """Get CI job links from the most recent data."""
        try:
            # Check if df exists and is not empty
            if Ci_results.df is None or Ci_results.df.empty:
                return "πŸ”— **CI Jobs:** *Loading...*"
            
            # Get links from any available model (they should be the same for all models in a run)
            amd_multi_link = None
            amd_single_link = None
            nvidia_multi_link = None
            nvidia_single_link = None
            
            for model_name in Ci_results.df.index:
                row = Ci_results.df.loc[model_name]
                
                # Extract AMD links
                if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
                    amd_link_raw = row.get('job_link_amd')
                    if isinstance(amd_link_raw, dict):
                        if 'multi' in amd_link_raw and not amd_multi_link:
                            amd_multi_link = amd_link_raw['multi']
                        if 'single' in amd_link_raw and not amd_single_link:
                            amd_single_link = amd_link_raw['single']
                
                # Extract NVIDIA links
                if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
                    nvidia_link_raw = row.get('job_link_nvidia')
                    if isinstance(nvidia_link_raw, dict):
                        if 'multi' in nvidia_link_raw and not nvidia_multi_link:
                            nvidia_multi_link = nvidia_link_raw['multi']
                        if 'single' in nvidia_link_raw and not nvidia_single_link:
                            nvidia_single_link = nvidia_link_raw['single']
                
                # Break if we have all links
                if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
                    break
            
            links_md = "πŸ”— **CI Jobs:**\n\n"
            
            # AMD links
            if amd_multi_link or amd_single_link:
                links_md += "**AMD:**\n"
                if amd_multi_link:
                    links_md += f"β€’ [Multi GPU]({amd_multi_link})\n"
                if amd_single_link:
                    links_md += f"β€’ [Single GPU]({amd_single_link})\n"
                links_md += "\n"
            
            # NVIDIA links
            if nvidia_multi_link or nvidia_single_link:
                links_md += "**NVIDIA:**\n"
                if nvidia_multi_link:
                    links_md += f"β€’ [Multi GPU]({nvidia_multi_link})\n"
                if nvidia_single_link:
                    links_md += f"β€’ [Single GPU]({nvidia_single_link})\n"
            
            if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
                links_md += "*No links available*"
                
            return links_md
        except Exception as e:
            logger.error(f"getting CI links: {e}")
            return "πŸ”— **CI Jobs:** *Error loading links*"
    

    # Auto-update CI links when the interface loads
    demo.load(
        fn=get_ci_links,
        outputs=[ci_links_display]
    )

if __name__ == "__main__":
    demo.launch()