Spaces:
Running
Running
File size: 20,004 Bytes
49fffdb c7954ca 2018d03 57be256 2018d03 64fcb68 57be256 c7954ca 57be256 2018d03 64fcb68 2018d03 64fcb68 49fffdb c7954ca 4989641 49fffdb 64fcb68 2018d03 64fcb68 2018d03 065764c 1afbdec 065764c 1afbdec 065764c 2018d03 4989641 065764c 4989641 065764c 4989641 1afbdec 065764c 1afbdec 065764c 4989641 065764c 1afbdec 065764c 4989641 1afbdec 2c2d476 1afbdec c7954ca 1afbdec 4989641 065764c 2c2d476 1afbdec 2c2d476 1afbdec 065764c 2c2d476 c7954ca ab88628 065764c 1afbdec 065764c 1afbdec 065764c 2018d03 4989641 49fffdb 2018d03 1afbdec 64fcb68 c95a637 2018d03 64fcb68 2018d03 065764c 2018d03 065764c 2018d03 065764c a899859 2018d03 9ec4a51 64fcb68 9ec4a51 2018d03 9ec4a51 a899859 065764c c95a637 a8d2652 c95a637 a8d2652 c95a637 a899859 881ab65 2018d03 a899859 9ec4a51 a899859 065764c c95a637 64fcb68 065764c c95a637 065764c 4989641 c95a637 2018d03 c95a637 2018d03 c95a637 065764c a899859 065764c c95a637 2018d03 9ec4a51 2018d03 c95a637 2018d03 9ec4a51 2018d03 9ec4a51 64fcb68 9ec4a51 2018d03 9ec4a51 2018d03 64fcb68 2018d03 64fcb68 2018d03 64fcb68 2018d03 49fffdb 2018d03 49fffdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import gradio as gr
import threading
from data import CIResults
from utils import logger, generate_underlined_line
from summary_page import create_summary_page
# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff() # Turn off interactive mode to prevent figure accumulation
# Load data once at startup
Ci_results = CIResults()
Ci_results.load_data()
# Start the auto-reload scheduler
Ci_results.schedule_data_reload()
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
if Ci_results.df.empty or model_name not in Ci_results.df.index:
# Handle case where model data is not available
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, f'No data available for {model_name}',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "No data available", "No data available"
row = Ci_results.df.loc[model_name]
# Handle missing values and get counts directly from dataframe
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0
# Calculate total failures
total_failed_amd = failed_multi_amd + failed_single_amd
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
# Softer color palette - less pastel, more vibrant
colors = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Create stats dictionaries directly from dataframe values
amd_stats = {
'passed': success_amd,
'failed': total_failed_amd,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
nvidia_stats = {
'passed': success_nvidia,
'failed': total_failed_nvidia,
'skipped': 0, # Not available in this dataset
'error': 0 # Not available in this dataset
}
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
if not amd_filtered and not nvidia_filtered:
# Handle case where all values are 0 - minimal empty state
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No test results available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "", ""
# Create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
ax1.set_facecolor('#000000')
ax2.set_facecolor('#000000')
def create_pie_chart(ax, device_label, filtered_stats):
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
ax.axis('off')
return
chart_colors = [colors[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=90,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color('#000000') # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color('#AAAAAA')
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label,
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
fontfamily='monospace')
# Create both pie charts with device labels
create_pie_chart(ax1, "amd", amd_filtered)
create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
color='#333333', linewidth=1, alpha=0.5,
transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}',
fontsize=32, weight='bold', color='#CCCCCC',
fontfamily='monospace', y=1)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
# Generate failure info directly from dataframe
failures_amd = row.get('failures_amd', {})
failures_nvidia = row.get('failures_nvidia', {})
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd)
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia)
return fig, amd_failed_info, nvidia_failed_info
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str:
"""Extract failure information from failures object."""
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0:
return f"No failures on {device}"
info_lines = []
# Add counts summary
if multi_count > 0 or single_count > 0:
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:"))
if multi_count > 0:
info_lines.append(f"Multi GPU failures: {multi_count}")
if single_count > 0:
info_lines.append(f"Single GPU failures: {single_count}")
info_lines.append("")
# Try to extract detailed failure information
try:
if isinstance(failures_obj, dict):
# Check for multi and single failure categories
if 'multi' in failures_obj and failures_obj['multi']:
info_lines.append(generate_underlined_line(f"Multi GPU failure details:"))
if isinstance(failures_obj['multi'], list):
# Handle list of failures (could be strings or dicts)
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10
if isinstance(failure, dict):
# Extract meaningful info from dict (e.g., test name, line, etc.)
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
info_lines.append(f" {i+1}. {failure_str}")
else:
info_lines.append(f" {i+1}. {str(failure)}")
if len(failures_obj['multi']) > 10:
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more")
else:
info_lines.append(str(failures_obj['multi']))
info_lines.append("")
if 'single' in failures_obj and failures_obj['single']:
info_lines.append(generate_underlined_line(f"Single GPU failure details:"))
if isinstance(failures_obj['single'], list):
# Handle list of failures (could be strings or dicts)
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10
if isinstance(failure, dict):
# Extract meaningful info from dict (e.g., test name, line, etc.)
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure))))
info_lines.append(f" {i+1}. {failure_str}")
else:
info_lines.append(f" {i+1}. {str(failure)}")
if len(failures_obj['single']) > 10:
info_lines.append(f"... and {len(failures_obj['single']) - 10} more")
else:
info_lines.append(str(failures_obj['single']))
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}"
except Exception as e:
if multi_count > 0 or single_count > 0:
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}"
return f"Error processing failure info for {device}: {str(e)}"
# Load CSS from external file
def load_css():
try:
with open("styles.css", "r") as f:
return f.read()
except FileNotFoundError:
logger.warning("styles.css not found, using minimal default styles")
return "body { background: #000; color: #fff; }"
# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
with gr.Row():
# Sidebar for model selection
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("# π€ TCID", elem_classes=["sidebar-title"])
# Description with integrated last update time
if Ci_results.last_update_time:
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
else:
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
# Summary button at the top
summary_button = gr.Button(
"summary\nπ",
variant="primary",
size="lg",
elem_classes=["summary-button"]
)
# Model selection header
gr.Markdown(f"**Select model ({len(Ci_results.available_models)}):**", elem_classes=["model-header"])
# Scrollable container for model buttons
with gr.Column(scale=1, elem_classes=["model-container"]):
# Create individual buttons for each model
model_buttons = []
model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"]
for model_name in model_choices:
btn = gr.Button(
model_name,
variant="secondary",
size="sm",
elem_classes=["model-button"]
)
model_buttons.append(btn)
# CI job links at bottom of sidebar
ci_links_display = gr.Markdown("π **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"])
# Main content area
with gr.Column(scale=4, elem_classes=["main-content"]):
# Summary display (default view)
summary_display = gr.Plot(
value=create_summary_page(Ci_results.df, Ci_results.available_models),
label="",
format="png",
elem_classes=["plot-container"],
visible=True
)
# Detailed view components (hidden by default)
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
# Create the plot output
plot_output = gr.Plot(
label="",
format="png",
elem_classes=["plot-container"]
)
# Create two separate failed tests displays in a row layout
with gr.Row():
with gr.Column(scale=1):
amd_failed_tests_output = gr.Textbox(
value="",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
with gr.Column(scale=1):
nvidia_failed_tests_output = gr.Textbox(
value="",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
# Set up click handlers for model buttons
for i, btn in enumerate(model_buttons):
model_name = model_choices[i]
btn.click(
fn=lambda selected_model=model_name: plot_model_stats(selected_model),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
).then(
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
outputs=[summary_display, detail_view]
)
# Summary button click handler
def show_summary_and_update_links():
"""Show summary page and update CI links."""
return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links()
summary_button.click(
fn=show_summary_and_update_links,
outputs=[summary_display, description_display, ci_links_display]
).then(
fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
outputs=[summary_display, detail_view]
)
# Function to get current description text
def get_description_text():
"""Get description text with integrated last update time."""
if Ci_results.last_update_time:
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n"
else:
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n"
# Function to get CI job links
def get_ci_links():
"""Get CI job links from the most recent data."""
try:
# Check if df exists and is not empty
if Ci_results.df is None or Ci_results.df.empty:
return "π **CI Jobs:** *Loading...*"
# Get links from any available model (they should be the same for all models in a run)
amd_multi_link = None
amd_single_link = None
nvidia_multi_link = None
nvidia_single_link = None
for model_name in Ci_results.df.index:
row = Ci_results.df.loc[model_name]
# Extract AMD links
if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
amd_link_raw = row.get('job_link_amd')
if isinstance(amd_link_raw, dict):
if 'multi' in amd_link_raw and not amd_multi_link:
amd_multi_link = amd_link_raw['multi']
if 'single' in amd_link_raw and not amd_single_link:
amd_single_link = amd_link_raw['single']
# Extract NVIDIA links
if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
nvidia_link_raw = row.get('job_link_nvidia')
if isinstance(nvidia_link_raw, dict):
if 'multi' in nvidia_link_raw and not nvidia_multi_link:
nvidia_multi_link = nvidia_link_raw['multi']
if 'single' in nvidia_link_raw and not nvidia_single_link:
nvidia_single_link = nvidia_link_raw['single']
# Break if we have all links
if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
break
links_md = "π **CI Jobs:**\n\n"
# AMD links
if amd_multi_link or amd_single_link:
links_md += "**AMD:**\n"
if amd_multi_link:
links_md += f"β’ [Multi GPU]({amd_multi_link})\n"
if amd_single_link:
links_md += f"β’ [Single GPU]({amd_single_link})\n"
links_md += "\n"
# NVIDIA links
if nvidia_multi_link or nvidia_single_link:
links_md += "**NVIDIA:**\n"
if nvidia_multi_link:
links_md += f"β’ [Multi GPU]({nvidia_multi_link})\n"
if nvidia_single_link:
links_md += f"β’ [Single GPU]({nvidia_single_link})\n"
if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
links_md += "*No links available*"
return links_md
except Exception as e:
logger.error(f"getting CI links: {e}")
return "π **CI Jobs:** *Error loading links*"
# Auto-update CI links when the interface loads
demo.load(
fn=get_ci_links,
outputs=[ci_links_display]
)
if __name__ == "__main__":
demo.launch()
|