Spaces:
Running
Running
import matplotlib.pyplot as plt | |
import matplotlib | |
import pandas as pd | |
import gradio as gr | |
import threading | |
from data import CIResults | |
from utils import logger, generate_underlined_line | |
from summary_page import create_summary_page | |
# Configure matplotlib to prevent memory warnings and set dark background | |
matplotlib.rcParams['figure.facecolor'] = '#000000' | |
matplotlib.rcParams['axes.facecolor'] = '#000000' | |
matplotlib.rcParams['savefig.facecolor'] = '#000000' | |
plt.ioff() # Turn off interactive mode to prevent figure accumulation | |
# Load data once at startup | |
Ci_results = CIResults() | |
Ci_results.load_data() | |
# Start the auto-reload scheduler | |
Ci_results.schedule_data_reload() | |
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]: | |
"""Draws a pie chart of model's passed, failed, skipped, and error stats.""" | |
if Ci_results.df.empty or model_name not in Ci_results.df.index: | |
# Handle case where model data is not available | |
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000') | |
ax.set_facecolor('#000000') | |
ax.text(0.5, 0.5, f'No data available for {model_name}', | |
horizontalalignment='center', verticalalignment='center', | |
transform=ax.transAxes, fontsize=16, color='#888888', | |
fontfamily='monospace', weight='normal') | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.axis('off') | |
return fig, "No data available", "No data available" | |
row = Ci_results.df.loc[model_name] | |
# Handle missing values and get counts directly from dataframe | |
success_amd = int(row.get('success_amd', 0)) if pd.notna(row.get('success_amd', 0)) else 0 | |
success_nvidia = int(row.get('success_nvidia', 0)) if pd.notna(row.get('success_nvidia', 0)) else 0 | |
failed_multi_amd = int(row.get('failed_multi_no_amd', 0)) if pd.notna(row.get('failed_multi_no_amd', 0)) else 0 | |
failed_multi_nvidia = int(row.get('failed_multi_no_nvidia', 0)) if pd.notna(row.get('failed_multi_no_nvidia', 0)) else 0 | |
failed_single_amd = int(row.get('failed_single_no_amd', 0)) if pd.notna(row.get('failed_single_no_amd', 0)) else 0 | |
failed_single_nvidia = int(row.get('failed_single_no_nvidia', 0)) if pd.notna(row.get('failed_single_no_nvidia', 0)) else 0 | |
# Calculate total failures | |
total_failed_amd = failed_multi_amd + failed_single_amd | |
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia | |
# Softer color palette - less pastel, more vibrant | |
colors = { | |
'passed': '#4CAF50', # Medium green | |
'failed': '#E53E3E', # More red | |
'skipped': '#FFD54F', # Medium yellow | |
'error': '#8B0000' # Dark red | |
} | |
# Create stats dictionaries directly from dataframe values | |
amd_stats = { | |
'passed': success_amd, | |
'failed': total_failed_amd, | |
'skipped': 0, # Not available in this dataset | |
'error': 0 # Not available in this dataset | |
} | |
nvidia_stats = { | |
'passed': success_nvidia, | |
'failed': total_failed_nvidia, | |
'skipped': 0, # Not available in this dataset | |
'error': 0 # Not available in this dataset | |
} | |
# Filter out categories with 0 values for cleaner visualization | |
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0} | |
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0} | |
if not amd_filtered and not nvidia_filtered: | |
# Handle case where all values are 0 - minimal empty state | |
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000') | |
ax.set_facecolor('#000000') | |
ax.text(0.5, 0.5, 'No test results available', | |
horizontalalignment='center', verticalalignment='center', | |
transform=ax.transAxes, fontsize=16, color='#888888', | |
fontfamily='monospace', weight='normal') | |
ax.set_xlim(0, 1) | |
ax.set_ylim(0, 1) | |
ax.axis('off') | |
return fig, "", "" | |
# Create figure with two subplots side by side with padding | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000') | |
ax1.set_facecolor('#000000') | |
ax2.set_facecolor('#000000') | |
def create_pie_chart(ax, device_label, filtered_stats): | |
if not filtered_stats: | |
ax.text(0.5, 0.5, 'No test results', | |
horizontalalignment='center', verticalalignment='center', | |
transform=ax.transAxes, fontsize=14, color='#888888', | |
fontfamily='monospace', weight='normal') | |
ax.set_title(device_label, | |
fontsize=28, weight='bold', pad=2, color='#FFFFFF', | |
fontfamily='monospace') | |
ax.axis('off') | |
return | |
chart_colors = [colors[category] for category in filtered_stats.keys()] | |
# Create minimal pie chart - full pie, no donut effect | |
wedges, texts, autotexts = ax.pie( | |
filtered_stats.values(), | |
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look | |
colors=chart_colors, | |
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}', | |
startangle=90, | |
explode=None, # No separation | |
shadow=False, | |
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders | |
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'} | |
) | |
# Enhanced percentage text styling for better readability | |
for autotext in autotexts: | |
autotext.set_color('#000000') # Black text for better contrast | |
autotext.set_weight('bold') | |
autotext.set_fontsize(14) | |
autotext.set_fontfamily('monospace') | |
# Minimal category labels | |
for text in texts: | |
text.set_color('#AAAAAA') | |
text.set_weight('normal') | |
text.set_fontsize(13) | |
text.set_fontfamily('monospace') | |
# Device label closer to chart and bigger | |
ax.set_title(device_label, | |
fontsize=28, weight='normal', pad=2, color='#FFFFFF', | |
fontfamily='monospace') | |
# Create both pie charts with device labels | |
create_pie_chart(ax1, "amd", amd_filtered) | |
create_pie_chart(ax2, "nvidia", nvidia_filtered) | |
# Add subtle separation line between charts - stops at device labels level | |
line_x = 0.5 | |
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85], | |
color='#333333', linewidth=1, alpha=0.5, | |
transform=fig.transFigure)) | |
# Add central shared title for model name | |
fig.suptitle(f'{model_name.lower()}', | |
fontsize=32, weight='bold', color='#CCCCCC', | |
fontfamily='monospace', y=1) | |
# Clean layout with padding and space for central title | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts | |
# Generate failure info directly from dataframe | |
failures_amd = row.get('failures_amd', {}) | |
failures_nvidia = row.get('failures_nvidia', {}) | |
amd_failed_info = extract_failure_info(failures_amd, 'AMD', failed_multi_amd, failed_single_amd) | |
nvidia_failed_info = extract_failure_info(failures_nvidia, 'NVIDIA', failed_multi_nvidia, failed_single_nvidia) | |
return fig, amd_failed_info, nvidia_failed_info | |
def extract_failure_info(failures_obj, device: str, multi_count: int, single_count: int) -> str: | |
"""Extract failure information from failures object.""" | |
if (not failures_obj or pd.isna(failures_obj)) and multi_count == 0 and single_count == 0: | |
return f"No failures on {device}" | |
info_lines = [] | |
# Add counts summary | |
if multi_count > 0 or single_count > 0: | |
info_lines.append(generate_underlined_line(f"Failure Summary for {device}:")) | |
if multi_count > 0: | |
info_lines.append(f"Multi GPU failures: {multi_count}") | |
if single_count > 0: | |
info_lines.append(f"Single GPU failures: {single_count}") | |
info_lines.append("") | |
# Try to extract detailed failure information | |
try: | |
if isinstance(failures_obj, dict): | |
# Check for multi and single failure categories | |
if 'multi' in failures_obj and failures_obj['multi']: | |
info_lines.append(generate_underlined_line(f"Multi GPU failure details:")) | |
if isinstance(failures_obj['multi'], list): | |
# Handle list of failures (could be strings or dicts) | |
for i, failure in enumerate(failures_obj['multi'][:10]): # Limit to first 10 | |
if isinstance(failure, dict): | |
# Extract meaningful info from dict (e.g., test name, line, etc.) | |
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure)))) | |
info_lines.append(f" {i+1}. {failure_str}") | |
else: | |
info_lines.append(f" {i+1}. {str(failure)}") | |
if len(failures_obj['multi']) > 10: | |
info_lines.append(f"... and {len(failures_obj['multi']) - 10} more") | |
else: | |
info_lines.append(str(failures_obj['multi'])) | |
info_lines.append("") | |
if 'single' in failures_obj and failures_obj['single']: | |
info_lines.append(generate_underlined_line(f"Single GPU failure details:")) | |
if isinstance(failures_obj['single'], list): | |
# Handle list of failures (could be strings or dicts) | |
for i, failure in enumerate(failures_obj['single'][:10]): # Limit to first 10 | |
if isinstance(failure, dict): | |
# Extract meaningful info from dict (e.g., test name, line, etc.) | |
failure_str = failure.get('line', failure.get('test', failure.get('name', str(failure)))) | |
info_lines.append(f" {i+1}. {failure_str}") | |
else: | |
info_lines.append(f" {i+1}. {str(failure)}") | |
if len(failures_obj['single']) > 10: | |
info_lines.append(f"... and {len(failures_obj['single']) - 10} more") | |
else: | |
info_lines.append(str(failures_obj['single'])) | |
return "\n".join(info_lines) if info_lines else f"No detailed failure info for {device}" | |
except Exception as e: | |
if multi_count > 0 or single_count > 0: | |
return f"Failures detected on {device} (Multi: {multi_count}, Single: {single_count})\nDetails unavailable: {str(e)}" | |
return f"Error processing failure info for {device}: {str(e)}" | |
# Load CSS from external file | |
def load_css(): | |
try: | |
with open("styles.css", "r") as f: | |
return f.read() | |
except FileNotFoundError: | |
logger.warning("styles.css not found, using minimal default styles") | |
return "body { background: #000; color: #fff; }" | |
# Create the Gradio interface with sidebar and dark theme | |
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo: | |
with gr.Row(): | |
# Sidebar for model selection | |
with gr.Column(scale=1, elem_classes=["sidebar"]): | |
gr.Markdown("# π€ TCID", elem_classes=["sidebar-title"]) | |
# Description with integrated last update time | |
if Ci_results.last_update_time: | |
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n" | |
else: | |
description_text = f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n" | |
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"]) | |
# Summary button at the top | |
summary_button = gr.Button( | |
"summary\nπ", | |
variant="primary", | |
size="lg", | |
elem_classes=["summary-button"] | |
) | |
# Model selection header | |
gr.Markdown(f"**Select model ({len(Ci_results.available_models)}):**", elem_classes=["model-header"]) | |
# Scrollable container for model buttons | |
with gr.Column(scale=1, elem_classes=["model-container"]): | |
# Create individual buttons for each model | |
model_buttons = [] | |
model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"] | |
for model_name in model_choices: | |
btn = gr.Button( | |
model_name, | |
variant="secondary", | |
size="sm", | |
elem_classes=["model-button"] | |
) | |
model_buttons.append(btn) | |
# CI job links at bottom of sidebar | |
ci_links_display = gr.Markdown("π **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"]) | |
# Main content area | |
with gr.Column(scale=4, elem_classes=["main-content"]): | |
# Summary display (default view) | |
summary_display = gr.Plot( | |
value=create_summary_page(Ci_results.df, Ci_results.available_models), | |
label="", | |
format="png", | |
elem_classes=["plot-container"], | |
visible=True | |
) | |
# Detailed view components (hidden by default) | |
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view: | |
# Create the plot output | |
plot_output = gr.Plot( | |
label="", | |
format="png", | |
elem_classes=["plot-container"] | |
) | |
# Create two separate failed tests displays in a row layout | |
with gr.Row(): | |
with gr.Column(scale=1): | |
amd_failed_tests_output = gr.Textbox( | |
value="", | |
lines=8, | |
max_lines=8, | |
interactive=False, | |
container=False, | |
elem_classes=["failed-tests"] | |
) | |
with gr.Column(scale=1): | |
nvidia_failed_tests_output = gr.Textbox( | |
value="", | |
lines=8, | |
max_lines=8, | |
interactive=False, | |
container=False, | |
elem_classes=["failed-tests"] | |
) | |
# Set up click handlers for model buttons | |
for i, btn in enumerate(model_buttons): | |
model_name = model_choices[i] | |
btn.click( | |
fn=lambda selected_model=model_name: plot_model_stats(selected_model), | |
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output] | |
).then( | |
fn=lambda: [gr.update(visible=False), gr.update(visible=True)], | |
outputs=[summary_display, detail_view] | |
) | |
# Summary button click handler | |
def show_summary_and_update_links(): | |
"""Show summary page and update CI links.""" | |
return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links() | |
summary_button.click( | |
fn=show_summary_and_update_links, | |
outputs=[summary_display, description_display, ci_links_display] | |
).then( | |
fn=lambda: [gr.update(visible=True), gr.update(visible=False)], | |
outputs=[summary_display, detail_view] | |
) | |
# Function to get current description text | |
def get_description_text(): | |
"""Get description text with integrated last update time.""" | |
if Ci_results.last_update_time: | |
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (last updated: {Ci_results.last_update_time})*\n" | |
else: | |
return f"**Transformer CI Dashboard**\n\n*Result overview by model and hardware (loading...)*\n" | |
# Function to get CI job links | |
def get_ci_links(): | |
"""Get CI job links from the most recent data.""" | |
try: | |
# Check if df exists and is not empty | |
if Ci_results.df is None or Ci_results.df.empty: | |
return "π **CI Jobs:** *Loading...*" | |
# Get links from any available model (they should be the same for all models in a run) | |
amd_multi_link = None | |
amd_single_link = None | |
nvidia_multi_link = None | |
nvidia_single_link = None | |
for model_name in Ci_results.df.index: | |
row = Ci_results.df.loc[model_name] | |
# Extract AMD links | |
if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link): | |
amd_link_raw = row.get('job_link_amd') | |
if isinstance(amd_link_raw, dict): | |
if 'multi' in amd_link_raw and not amd_multi_link: | |
amd_multi_link = amd_link_raw['multi'] | |
if 'single' in amd_link_raw and not amd_single_link: | |
amd_single_link = amd_link_raw['single'] | |
# Extract NVIDIA links | |
if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link): | |
nvidia_link_raw = row.get('job_link_nvidia') | |
if isinstance(nvidia_link_raw, dict): | |
if 'multi' in nvidia_link_raw and not nvidia_multi_link: | |
nvidia_multi_link = nvidia_link_raw['multi'] | |
if 'single' in nvidia_link_raw and not nvidia_single_link: | |
nvidia_single_link = nvidia_link_raw['single'] | |
# Break if we have all links | |
if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link: | |
break | |
links_md = "π **CI Jobs:**\n\n" | |
# AMD links | |
if amd_multi_link or amd_single_link: | |
links_md += "**AMD:**\n" | |
if amd_multi_link: | |
links_md += f"β’ [Multi GPU]({amd_multi_link})\n" | |
if amd_single_link: | |
links_md += f"β’ [Single GPU]({amd_single_link})\n" | |
links_md += "\n" | |
# NVIDIA links | |
if nvidia_multi_link or nvidia_single_link: | |
links_md += "**NVIDIA:**\n" | |
if nvidia_multi_link: | |
links_md += f"β’ [Multi GPU]({nvidia_multi_link})\n" | |
if nvidia_single_link: | |
links_md += f"β’ [Single GPU]({nvidia_single_link})\n" | |
if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link): | |
links_md += "*No links available*" | |
return links_md | |
except Exception as e: | |
logger.error(f"getting CI links: {e}") | |
return "π **CI Jobs:** *Error loading links*" | |
# Auto-update CI links when the interface loads | |
demo.load( | |
fn=get_ci_links, | |
outputs=[ci_links_display] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |