File size: 6,927 Bytes
0618de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# # Install core packages
# !pip install -U transformers datasets accelerate
# Python standard + ML packages
import pandas as pd
import numpy as np
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_recall_fscore_support
from torch.utils.data import Dataset
# Hugging Face transformers
from transformers import (
AutoTokenizer,
BertTokenizer,
BertForSequenceClassification,
AutoModelForSequenceClassification,
Trainer,
TrainingArguments
)
# Custom Dataset class
class AbuseDataset(Dataset):
def __init__(self, texts, labels):
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float)
return item
# Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
def label_row_soft(row):
labels = []
for col in label_columns:
val = str(row[col]).strip().lower()
if val == "yes":
labels.append(1.0)
elif val == "plausibly":
labels.append(0.5)
else:
labels.append(0.0)
return labels
# Function to map probabilities to 3 classes
# (0.0, 0.5, 1.0) based on thresholds
def map_to_3_classes(prob_array, low, high):
"""Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
mapped = np.zeros_like(prob_array)
mapped[(prob_array > low) & (prob_array <= high)] = 0.5
mapped[prob_array > high] = 1.0
return mapped
def convert_to_label_strings(array):
"""Convert float label array to list of strings."""
return [label_map[val] for val in array.flatten()]
def tune_thresholds(probs, true_labels, verbose=True):
"""Search for best (low, high) thresholds by macro F1 score."""
best_macro_f1 = 0.0
best_low, best_high = 0.0, 0.0
for low in np.arange(0.2, 0.5, 0.05):
for high in np.arange(0.55, 0.8, 0.05):
if high <= low:
continue
pred_soft = map_to_3_classes(probs, low, high)
pred_str = convert_to_label_strings(pred_soft)
true_str = convert_to_label_strings(true_labels)
_, _, f1, _ = precision_recall_fscore_support(
true_str, pred_str,
labels=["no", "plausibly", "yes"],
average="macro",
zero_division=0
)
if verbose:
print(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
if f1 > best_macro_f1:
best_macro_f1 = f1
best_low, best_high = low, high
return best_low, best_high, best_macro_f1
def evaluate_model_with_thresholds(trainer, test_dataset):
"""Run full evaluation with automatic threshold tuning."""
print("\nπ Running model predictions...")
predictions = trainer.predict(test_dataset)
probs = torch.sigmoid(torch.tensor(predictions.predictions)).numpy()
true_soft = np.array(predictions.label_ids)
print("\nπ Tuning thresholds...")
best_low, best_high, best_f1 = tune_thresholds(probs, true_soft)
print(f"\nβ
Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})")
final_pred_soft = map_to_3_classes(probs, best_low, best_high)
final_pred_str = convert_to_label_strings(final_pred_soft)
true_str = convert_to_label_strings(true_soft)
print("\nπ Final Evaluation Report (multi-class per label):\n")
print(classification_report(
true_str,
final_pred_str,
labels=["no", "plausibly", "yes"],
zero_division=0
))
return {
"thresholds": (best_low, best_high),
"macro_f1": best_f1,
"true_labels": true_str,
"pred_labels": final_pred_str
}
# Load dataset
df = pd.read_excel("Abusive Relationship Stories - Technion & MSF.xlsx")
# Define text and label columns
text_column = "post_body"
label_columns = [
'emotional_violence', 'physical_violence', 'sexual_violence', 'spiritual_violence',
'economic_violence', 'past_offenses', 'social_isolation', 'refuses_treatment',
'suicidal_threats', 'mental_condition', 'daily_activity_control', 'violent_behavior',
'unemployment', 'substance_use', 'obsessiveness', 'jealousy', 'outbursts',
'ptsd', 'hard_childhood', 'emotional_dependency', 'prevention_of_care',
'fear_based_relationship', 'humiliation', 'physical_threats',
'presence_of_others_in_assault', 'signs_of_injury', 'property_damage',
'access_to_weapons', 'gaslighting'
]
print(np.shape(df))
# Clean data
df = df[[text_column] + label_columns]
print(np.shape(df))
df = df.dropna(subset=[text_column])
print(np.shape(df))
df["label_vector"] = df.apply(label_row_soft, axis=1)
label_matrix = df["label_vector"].tolist()
#model_name = "onlplab/alephbert-base"
model_name = "microsoft/deberta-v3-base"
# Load pretrained Hebrew model (AlephBERT) for fine-tuning
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=len(label_columns),
problem_type="multi_label_classification"
)
# # Optional: Freeze base model layers (only train classifier head)
# freeze_base = False
# if freeze_base:
# for name, param in model.bert.named_parameters():
# param.requires_grad = False
# Freeze bottom 6 layers of DeBERTa encoder
for name, param in model.named_parameters():
if any(f"encoder.layer.{i}." in name for i in range(0, 6)):
param.requires_grad = False
# Proper 3-way split: train / val / test
train_val_texts, test_texts, train_val_labels, test_labels = train_test_split(
df[text_column].tolist(), label_matrix, test_size=0.2, random_state=42
)
train_texts, val_texts, train_labels, val_labels = train_test_split(
train_val_texts, train_val_labels, test_size=0.1, random_state=42
)
train_dataset = AbuseDataset(train_texts, train_labels)
val_dataset = AbuseDataset(val_texts, val_labels)
test_dataset = AbuseDataset(test_texts, test_labels)
# TrainingArguments for HuggingFace Trainer (logging, saving)
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_dir="./logs",
logging_steps=10,
)
# Train using HuggingFace Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
# Start training!
trainer.train()
label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
evaluate_model_with_thresholds(trainer, test_dataset) |