File size: 7,416 Bytes
0618de2
 
80b417a
0618de2
 
 
 
 
 
 
 
 
 
 
7a679b4
 
 
0618de2
 
 
58be06f
0618de2
 
 
 
 
 
 
7a679b4
58be06f
 
 
0618de2
 
 
 
 
 
 
 
 
 
58be06f
 
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b417a
7a679b4
 
 
 
 
80b417a
 
7a679b4
 
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58be06f
 
0618de2
 
 
 
58be06f
0618de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# # Install core packages
# !pip install -U transformers datasets accelerate
import os

# Python standard + ML packages
import pandas as pd
import numpy as np
import torch

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, precision_recall_fscore_support

from torch.utils.data import Dataset

# Hugging Face Hub
from huggingface_hub import hf_hub_download

# Hugging Face transformers
from transformers import (
    AutoTokenizer,
    DebertaV2Tokenizer,
    BertTokenizer, 
    BertForSequenceClassification,
    AutoModelForSequenceClassification,
    Trainer,
    TrainingArguments
)


# Check for GPU availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Custom Dataset class
class AbuseDataset(Dataset):
    def __init__(self, texts, labels):
        self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=512)
        self.labels = labels

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]).to(device) for key, val in self.encodings.items()}
        item["labels"] = torch.tensor(self.labels[idx], dtype=torch.float).to(device)
        return item


#  Convert label values to soft scores: "yes" = 1.0, "plausibly" = 0.5, others = 0.0
def label_row_soft(row):
    labels = []
    for col in label_columns:
        val = str(row[col]).strip().lower()
        if val == "yes":
            labels.append(1.0)
        elif val == "plausibly":
            labels.append(0.5)
        else:
            labels.append(0.0)
    return labels
    
# Function to map probabilities to 3 classes
# (0.0, 0.5, 1.0) based on thresholds
def map_to_3_classes(prob_array, low, high):
    """Map probabilities to 0.0, 0.5, 1.0 using thresholds."""
    mapped = np.zeros_like(prob_array)
    mapped[(prob_array > low) & (prob_array <= high)] = 0.5
    mapped[prob_array > high] = 1.0
    return mapped

def convert_to_label_strings(array):
    """Convert float label array to list of strings."""
    return [label_map[val] for val in array.flatten()]

def tune_thresholds(probs, true_labels, verbose=True):
    """Search for best (low, high) thresholds by macro F1 score."""
    best_macro_f1 = 0.0
    best_low, best_high = 0.0, 0.0

    for low in np.arange(0.2, 0.5, 0.05):
        for high in np.arange(0.55, 0.8, 0.05):
            if high <= low:
                continue

            pred_soft = map_to_3_classes(probs, low, high)
            pred_str = convert_to_label_strings(pred_soft)
            true_str = convert_to_label_strings(true_labels)

            _, _, f1, _ = precision_recall_fscore_support(
                true_str, pred_str,
                labels=["no", "plausibly", "yes"],
                average="macro",
                zero_division=0
            )
            if verbose:
                print(f"low={low:.2f}, high={high:.2f} -> macro F1={f1:.3f}")
            if f1 > best_macro_f1:
                best_macro_f1 = f1
                best_low, best_high = low, high

    return best_low, best_high, best_macro_f1

def evaluate_model_with_thresholds(trainer, test_dataset):
    """Run full evaluation with automatic threshold tuning."""
    print("\nπŸ” Running model predictions...")
    predictions = trainer.predict(test_dataset)
    probs = torch.sigmoid(torch.tensor(predictions.predictions)).numpy()
    true_soft = np.array(predictions.label_ids)

    print("\nπŸ”Ž Tuning thresholds...")
    best_low, best_high, best_f1 = tune_thresholds(probs, true_soft)

    print(f"\nβœ… Best thresholds: low={best_low:.2f}, high={best_high:.2f} (macro F1={best_f1:.3f})")

    final_pred_soft = map_to_3_classes(probs, best_low, best_high)
    final_pred_str = convert_to_label_strings(final_pred_soft)
    true_str = convert_to_label_strings(true_soft)

    print("\nπŸ“Š Final Evaluation Report (multi-class per label):\n")
    print(classification_report(
        true_str,
        final_pred_str,
        labels=["no", "plausibly", "yes"],
        zero_division=0
    ))

    return {
        "thresholds": (best_low, best_high),
        "macro_f1": best_f1,
        "true_labels": true_str,
        "pred_labels": final_pred_str
    }

token = os.environ.get("HF_TOKEN")  # Reads my token from a secure hf secret

# Load dataset from Hugging Face Hub
path = hf_hub_download(
    repo_id="rshakked/abusive-relashionship-stories",
    filename="Abusive Relationship Stories - Technion & MSF.xlsx",
    repo_type="dataset",
    use_auth_token= token
)
df = pd.read_excel(path)

# Define text and label columns
text_column = "post_body" 
label_columns = [
    'emotional_violence', 'physical_violence', 'sexual_violence', 'spiritual_violence',
    'economic_violence', 'past_offenses', 'social_isolation', 'refuses_treatment',
    'suicidal_threats', 'mental_condition', 'daily_activity_control', 'violent_behavior',
    'unemployment', 'substance_use', 'obsessiveness', 'jealousy', 'outbursts',
    'ptsd', 'hard_childhood', 'emotional_dependency', 'prevention_of_care',
    'fear_based_relationship', 'humiliation', 'physical_threats',
    'presence_of_others_in_assault', 'signs_of_injury', 'property_damage',
    'access_to_weapons', 'gaslighting'
]

print(np.shape(df))
# Clean data
df = df[[text_column] + label_columns]
print(np.shape(df))
df = df.dropna(subset=[text_column])
print(np.shape(df))

df["label_vector"] = df.apply(label_row_soft, axis=1)
label_matrix = df["label_vector"].tolist()


#model_name = "onlplab/alephbert-base"
model_name = "microsoft/deberta-v3-base"

# Load pretrained model for fine-tuning
tokenizer = DebertaV2Tokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
    model_name,
    num_labels=len(label_columns),
    problem_type="multi_label_classification"
).to(device)  # Move model to GPU

# # Optional: Freeze base model layers (only train classifier head)
# freeze_base = False
# if freeze_base:
#     for name, param in model.bert.named_parameters():
#         param.requires_grad = False

# Freeze bottom 6 layers of DeBERTa encoder
for name, param in model.named_parameters():
    if any(f"encoder.layer.{i}." in name for i in range(0, 6)):
        param.requires_grad = False
    

# Proper 3-way split: train / val / test
train_val_texts, test_texts, train_val_labels, test_labels = train_test_split(
    df[text_column].tolist(), label_matrix, test_size=0.2, random_state=42
)

train_texts, val_texts, train_labels, val_labels = train_test_split(
    train_val_texts, train_val_labels, test_size=0.1, random_state=42
)

train_dataset = AbuseDataset(train_texts, train_labels)
val_dataset = AbuseDataset(val_texts, val_labels)
test_dataset = AbuseDataset(test_texts, test_labels)


# TrainingArguments for HuggingFace Trainer (logging, saving)
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    logging_dir="./logs",
    logging_steps=10,
)

# Train using HuggingFace Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=val_dataset
)

# Start training!
trainer.train()

label_map = {0.0: "no", 0.5: "plausibly", 1.0: "yes"}
evaluate_model_with_thresholds(trainer, test_dataset)