File size: 1,595 Bytes
840e37c
bc56514
 
 
 
 
 
 
840e37c
2032430
bc56514
54299e5
 
bc56514
 
 
 
 
 
 
 
 
 
 
 
 
 
9364099
bc56514
 
9364099
bc56514
 
 
 
 
a9706bf
2032430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
from train_abuse_model import (
    run_training,
    evaluate_saved_model,
    push_model_to_hub
)
from predict_pipeline import run_prediction_pipeline


with gr.Blocks() as demo:
    gr.Markdown("## ๐Ÿง  Abuse Detection App")
    gr.Markdown("โš ๏ธ Keep this tab open while training or evaluating.")

    with gr.Tab("๐Ÿงช Train / Evaluate"):
        with gr.Row():
            start_btn = gr.Button("๐Ÿš€ Start Training")
            eval_btn = gr.Button("๐Ÿ” Evaluate Trained Model")
            push_btn = gr.Button("๐Ÿ“ค Push Model to Hub")
        output_box = gr.Textbox(label="Logs", lines=25, interactive=False)
        start_btn.click(fn=run_training, outputs=output_box)
        eval_btn.click(fn=evaluate_saved_model, outputs=output_box)
        push_btn.click(fn=push_model_to_hub, outputs=output_box)

    with gr.Tab("๐Ÿ”ฎ Abuse Detection"):
        desc_input = gr.Textbox(label="๐Ÿ“ Relationship Description", lines=5, placeholder="Write a relationship story here...")
        chat_upload = gr.File(label="๐Ÿ“ Optional: WhatsApp Chat ZIP (.zip)", file_types=[".zip"])
        predict_btn = gr.Button("Run Prediction")

        enriched_output = gr.Textbox(label="๐Ÿ“Ž Enriched Input (Used for Prediction)", lines=8, interactive=False)
        label_output = gr.Textbox(label="๐Ÿท๏ธ Predicted Labels", lines=2, interactive=False)

        predict_btn.click(
            fn=run_prediction_pipeline,
            inputs=[desc_input, chat_upload],
            outputs=[enriched_output, label_output]
        )

if __name__ == "__main__":
    demo.launch()