File size: 2,598 Bytes
840e37c
9a19cb3
bc56514
 
 
 
 
 
758b108
840e37c
2032430
bc56514
54299e5
 
bc56514
 
 
 
 
 
 
 
 
 
 
 
 
 
9364099
bc56514
 
9364099
bc56514
 
 
 
 
758b108
9a19cb3
 
 
c8d8b34
9a19cb3
 
 
 
 
 
 
 
 
c8d8b34
9a19cb3
 
 
c8d8b34
9a19cb3
 
c8d8b34
9a19cb3
 
a9706bf
1d998d0
c8d8b34
2032430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import os
from train_abuse_model import (
    run_training,
    evaluate_saved_model,
    push_model_to_hub
)
from predict_pipeline import run_prediction_pipeline


with gr.Blocks() as demo:
    gr.Markdown("## ๐Ÿง  Abuse Detection App")
    gr.Markdown("โš ๏ธ Keep this tab open while training or evaluating.")

    with gr.Tab("๐Ÿงช Train / Evaluate"):
        with gr.Row():
            start_btn = gr.Button("๐Ÿš€ Start Training")
            eval_btn = gr.Button("๐Ÿ” Evaluate Trained Model")
            push_btn = gr.Button("๐Ÿ“ค Push Model to Hub")
        output_box = gr.Textbox(label="Logs", lines=25, interactive=False)
        start_btn.click(fn=run_training, outputs=output_box)
        eval_btn.click(fn=evaluate_saved_model, outputs=output_box)
        push_btn.click(fn=push_model_to_hub, outputs=output_box)

    with gr.Tab("๐Ÿ”ฎ Abuse Detection"):
        desc_input = gr.Textbox(label="๐Ÿ“ Relationship Description", lines=5, placeholder="Write a relationship story here...")
        chat_upload = gr.File(label="๐Ÿ“ Optional: WhatsApp Chat ZIP (.zip)", file_types=[".zip"])
        predict_btn = gr.Button("Run Prediction")

        enriched_output = gr.Textbox(label="๐Ÿ“Ž Enriched Input (Used for Prediction)", lines=8, interactive=False)
        label_output = gr.Textbox(label="๐Ÿท๏ธ Predicted Labels", lines=2, interactive=False)

        predict_btn.click(
            fn=run_prediction_pipeline,
            inputs=[desc_input, chat_upload],
            outputs=[enriched_output, label_output]
        )

    with gr.Tab("๐Ÿ“Š View Evaluation Reports"):
        def list_eval_files():
            folder = "/home/user/app/results_eval"
            return sorted(os.listdir(folder), reverse=True) if os.path.exists(folder) else []

        def load_eval_file(filename):
            path = f"/home/user/app/results_eval/{filename}"
            if not os.path.exists(path):
                return "โŒ File not found."
            with open(path, "r", encoding="utf-8") as f:
                return f.read()

        file_dropdown = gr.Dropdown(
            choices=[],
            label="๐Ÿ“ Select an evaluation file",
            interactive=True
        )
        refresh_btn = gr.Button("๐Ÿ”„ Refresh File List")
        report_output = gr.Textbox(label="๐Ÿ“„ Evaluation Report", lines=20)

        refresh_btn.click(fn=lambda: gr.Dropdown.update(choices=list_eval_files()), outputs=file_dropdown)
        file_dropdown.change(fn=load_eval_file, inputs=file_dropdown, outputs=report_output)




if __name__ == "__main__":
    demo.launch()