Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torchvision import transforms, models
|
4 |
-
from torchvision.models import DenseNet121_Weights
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
|
8 |
# Load the pre-trained DenseNet-121 model
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
-
|
11 |
-
# Use DenseNet121 with updated weights parameter
|
12 |
-
weights = DenseNet121_Weights.IMAGENET1K_V1
|
13 |
-
model = models.densenet121(weights=weights)
|
14 |
|
15 |
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
|
16 |
num_classes = 14
|
@@ -21,8 +17,8 @@ model.classifier = nn.Sequential(
|
|
21 |
|
22 |
try:
|
23 |
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
|
24 |
-
except
|
25 |
-
print("Error loading pre-trained weights:
|
26 |
model.to(device)
|
27 |
model.eval()
|
28 |
|
@@ -72,6 +68,7 @@ def predict_disease(image):
|
|
72 |
}
|
73 |
return result
|
74 |
|
|
|
75 |
# References to display
|
76 |
references = """
|
77 |
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
|
@@ -89,6 +86,15 @@ interface = gr.Interface(
|
|
89 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
90 |
)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Launch the Gradio app
|
93 |
if __name__ == "__main__":
|
94 |
interface.launch()
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torchvision import transforms, models
|
|
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
|
7 |
# Load the pre-trained DenseNet-121 model
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model = models.densenet121(pretrained=True)
|
|
|
|
|
|
|
10 |
|
11 |
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
|
12 |
num_classes = 14
|
|
|
17 |
|
18 |
try:
|
19 |
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading pre-trained weights: {e}")
|
22 |
model.to(device)
|
23 |
model.eval()
|
24 |
|
|
|
68 |
}
|
69 |
return result
|
70 |
|
71 |
+
|
72 |
# References to display
|
73 |
references = """
|
74 |
1. Huang, G., et al. (2017). Densely Connected Convolutional Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
|
|
|
86 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
87 |
)
|
88 |
|
89 |
+
# Gradio Interface
|
90 |
+
interface = gr.Interface(
|
91 |
+
fn=predict_disease,
|
92 |
+
inputs=gr.components.Image(type='pil'), # Updated input component
|
93 |
+
outputs="label", # Output is a dictionary of labels with probabilities
|
94 |
+
title="CheXNet Pneumonia Detection",
|
95 |
+
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
96 |
+
)
|
97 |
+
|
98 |
# Launch the Gradio app
|
99 |
if __name__ == "__main__":
|
100 |
interface.launch()
|