Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torchvision import transforms, models
|
|
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
|
7 |
# Load the pre-trained DenseNet-121 model
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
|
12 |
num_classes = 14
|
@@ -17,8 +21,8 @@ model.classifier = nn.Sequential(
|
|
17 |
|
18 |
try:
|
19 |
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
|
20 |
-
except
|
21 |
-
print(
|
22 |
model.to(device)
|
23 |
model.eval()
|
24 |
|
@@ -76,14 +80,13 @@ references = """
|
|
76 |
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569.
|
77 |
"""
|
78 |
|
79 |
-
# Gradio Interface
|
80 |
interface = gr.Interface(
|
81 |
fn=predict_disease,
|
82 |
inputs=gr.components.Image(type='pil'), # Updated input component
|
83 |
-
outputs="label",
|
84 |
title="CheXNet Pneumonia Detection",
|
85 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
86 |
-
additional_outputs=[gr.components.Textbox(label="References", value=references, lines=10)], # Display references
|
87 |
)
|
88 |
|
89 |
# Launch the Gradio app
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torchvision import transforms, models
|
4 |
+
from torchvision.models import DenseNet121_Weights
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
|
8 |
# Load the pre-trained DenseNet-121 model
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# Use DenseNet121 with updated weights parameter
|
12 |
+
weights = DenseNet121_Weights.IMAGENET1K_V1
|
13 |
+
model = models.densenet121(weights=weights)
|
14 |
|
15 |
# Modify the classifier layer to output probabilities for 14 classes (pathologies)
|
16 |
num_classes = 14
|
|
|
21 |
|
22 |
try:
|
23 |
model.load_state_dict(torch.load('chexnet.pth', map_location=device))
|
24 |
+
except FileNotFoundError:
|
25 |
+
print("Error loading pre-trained weights: 'chexnet.pth' file not found.")
|
26 |
model.to(device)
|
27 |
model.eval()
|
28 |
|
|
|
80 |
4. Abid, A., et al. (2019). Gradio: Hassle-Free Sharing and Testing of Machine Learning Models. arXiv preprint arXiv:1906.02569.
|
81 |
"""
|
82 |
|
83 |
+
# Gradio Interface without using deprecated parameters
|
84 |
interface = gr.Interface(
|
85 |
fn=predict_disease,
|
86 |
inputs=gr.components.Image(type='pil'), # Updated input component
|
87 |
+
outputs=[gr.components.Label(label="Disease Probabilities"), gr.components.Textbox(label="References", value=references, lines=10)],
|
88 |
title="CheXNet Pneumonia Detection",
|
89 |
description="Upload a chest X-ray to detect the probability of 14 different diseases.",
|
|
|
90 |
)
|
91 |
|
92 |
# Launch the Gradio app
|