Spaces:
Running
Running
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
from typing import Iterator | |
model_name = "rubenroy/Zurich-14B-GCv2-5m" | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def generate(message: str, chat_history: list[tuple[str, str]], temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1) -> Iterator[str]: | |
"""Generates text responses using Zurich model with streaming.""" | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True if float(temperature) > 0 else False, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
TITLE_HTML = """ | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> | |
<style> | |
.model-btn { | |
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%); | |
color: white !important; | |
padding: 0.75rem 1rem; | |
border-radius: 0.5rem; | |
text-decoration: none !important; | |
font-weight: 500; | |
transition: all 0.2s ease; | |
font-size: 0.9rem; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.model-btn:hover { | |
background: linear-gradient(135deg, #1d4ed8 0%, #1e40af 100%); | |
box-shadow: 0 4px 6px rgba(0,0,0,0.2); | |
} | |
.model-section { | |
flex: 1; | |
max-width: 450px; | |
background: rgba(255, 255, 255, 0.05); | |
padding: 1.5rem; | |
border-radius: 1rem; | |
border: 1px solid rgba(255, 255, 255, 0.1); | |
backdrop-filter: blur(10px); | |
transition: all 0.3s ease; | |
} | |
</style> | |
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);"> | |
<div style="margin-bottom: 1.5rem;"> | |
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1> | |
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p> | |
</div> | |
</div> | |
""" | |
examples = [ | |
["Explain quantum computing in simple terms"], | |
["Write a short story about a time traveler"], | |
["Explain the process of photosynthesis"], | |
["Tell me an interesting fact about Palm trees"] | |
] | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE_HTML) | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="Temperature", info="Higher values make the output more random") | |
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P", info="Controls nucleus sampling") | |
top_k = gr.Slider(1, 100, value=50, step=1, label="Top K", info="Limits vocabulary choices per step") | |
with gr.Column(): | |
max_new_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max New Tokens", info="Limits response length") | |
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty", info="Discourages repeated phrases") | |
chatbot = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[temperature, top_p, top_k, max_new_tokens, repetition_penalty], | |
examples=examples | |
) | |
demo.launch(share=True) |