File size: 6,907 Bytes
3935f98
 
71c7cb5
 
87475e8
0b10650
3935f98
83eba02
 
 
0b10650
 
 
83eba02
93e353c
3935f98
 
0b10650
 
 
39890ac
0b10650
39890ac
 
 
 
 
 
 
93e353c
71c7cb5
0b10650
 
 
39890ac
0b10650
39890ac
 
 
93e353c
71c7cb5
0b10650
3751b1c
83eba02
71c7cb5
8af823f
83eba02
39890ac
0b10650
 
 
 
 
 
 
8af823f
0b10650
 
 
 
 
39890ac
8af823f
 
87475e8
8af823f
 
 
c1c0b76
83eba02
39890ac
83eba02
 
39890ac
83eba02
39890ac
87475e8
83eba02
39890ac
8af823f
01fb377
83eba02
 
 
 
 
39890ac
8af823f
87475e8
0b10650
 
 
 
 
 
 
 
 
8af823f
5a48c62
 
 
 
 
 
 
 
 
 
 
 
8af823f
5a48c62
 
 
 
 
 
 
 
 
 
0b10650
83eba02
0b10650
83eba02
 
 
0b10650
 
 
 
01fb377
0b10650
 
 
01fb377
0b10650
83eba02
0b10650
 
01fb377
0b10650
 
 
83eba02
01fb377
 
baffc49
0b10650
 
 
 
 
83eba02
 
71c7cb5
 
 
87475e8
5a48c62
 
 
0b10650
 
5a48c62
0b10650
 
 
 
 
 
 
 
 
 
 
 
5a48c62
 
 
71c7cb5
8af823f
0b10650
3751b1c
0b10650
 
 
 
 
 
 
 
 
 
87475e8
83eba02
baffc49
8af823f
 
 
0b10650
01fb377
 
 
0b10650
01fb377
 
83eba02
0b10650
83eba02
 
3935f98
baffc49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
from huggingface_hub import InferenceClient
import PyPDF2
import io
from docx import Document
import os

# For PDF generation
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from reportlab.lib import utils
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet

# Initialize the inference client from Hugging Face.
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def extract_text_from_pdf(pdf_file):
    """Extract text from PDF file."""
    try:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page in pdf_reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + "\n"
        return text.strip() or "No text could be extracted from the PDF."
    except Exception as e:
        return f"Error reading PDF: {e}"


def extract_text_from_docx(docx_file):
    """Extract text from DOCX file."""
    try:
        doc = Document(docx_file)
        text = "\n".join(para.text for para in doc.paragraphs)
        return text.strip() or "No text could be extracted from the DOCX file."
    except Exception as e:
        return f"Error reading DOCX: {e}"


def parse_cv(file, job_description):
    """Analyze the CV, show the prompt (debug) and return LLM analysis."""
    if file is None:
        return "Please upload a CV file.", ""

    try:
        file_path = file.name  # Get the file path
        file_ext = os.path.splitext(file_path)[1].lower()

        if file_ext == ".pdf":
            extracted_text = extract_text_from_pdf(file_path)
        elif file_ext == ".docx":
            extracted_text = extract_text_from_docx(file_path)
        else:
            return (
                "Unsupported file format. Please upload a PDF or DOCX file.",
                "Unsupported file format.",
            )

    except Exception as e:
        error_msg = f"Error reading file: {e}"
        return error_msg, error_msg

    # Check for extraction errors
    if extracted_text.startswith("Error"):
        return extracted_text, "Error during text extraction. Please check the file."

    # Prepare debug prompt
    prompt = (
        f"Analyze the CV against the job description. Provide a summary, assessment, "
        f"and a score 0-10.\n\n"
        f"Job Description:\n{job_description}\n\n"
        f"Candidate CV:\n{extracted_text}\n"
    )

    # Call LLM
    try:
        analysis = client.text_generation(prompt, max_new_tokens=512)
        # Show both the debug prompt and the LLM analysis in the "Analysis Report"
        analysis_report = (
            f"--- DEBUG PROMPT ---\n{prompt}\n"
            f"--- LLM ANALYSIS ---\n{analysis}"
        )
        return extracted_text, analysis_report
    except Exception as e:
        return extracted_text, f"Analysis Error: {e}"


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    """Generate chatbot response."""
    messages = [{"role": "system", "content": system_message}]
    for user_msg, bot_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})
    messages.append({"role": "user", "content": message})

    response = ""
    try:
        for message_chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message_chunk.choices[0].delta.content
            response += token
            yield response
    except Exception as e:
        yield f"Error during chat generation: {e}"


def create_pdf_report(report_text):
    """Creates a PDF report using SimpleDocTemplate for better formatting."""
    if not report_text.strip():
        report_text = "No analysis report to convert."

    buffer = io.BytesIO()
    doc = SimpleDocTemplate(buffer, pagesize=letter)
    styles = getSampleStyleSheet()
    Story = []

    # Title
    Story.append(Paragraph("<b>Analysis Report</b>", styles["Title"]))
    Story.append(Spacer(1, 12))

    # Report Content
    for line in report_text.split("\n"):
        Story.append(Paragraph(line, styles["Normal"]))
        Story.append(Spacer(1, 6))  # Add a small space between lines

    doc.build(Story)
    buffer.seek(0)
    return buffer


def toggle_download_button(analysis_report):
    """Toggle the download button."""
    return gr.update(
        interactive=bool(analysis_report.strip()),
        visible=bool(analysis_report.strip()),
    )


# Build the Gradio UI
demo = gr.Blocks()
with demo:
    gr.Markdown("## AI-powered CV Analyzer and Chatbot")

    with gr.Tab("Chatbot"):
        chat_interface = gr.ChatInterface(
            respond,
            chatbot=gr.Chatbot(value=[], label="Chatbot"),
            textbox=gr.Textbox(placeholder="Enter your message here...", label="Message"),
            additional_inputs=[
                gr.Textbox(
                    value="You are a friendly Chatbot.", label="System message"
                ),
                gr.Slider(
                    minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"
                ),
                gr.Slider(
                    minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
                ),
                gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
                ),
            ],
        )

    with gr.Tab("CV Analyzer"):
        gr.Markdown("### Upload your CV and provide the job description")
        file_input = gr.File(label="Upload CV", file_types=[".pdf", ".docx"])
        job_desc_input = gr.Textbox(label="Job Description", lines=5)
        extracted_text = gr.Textbox(
            label="Extracted CV Content", lines=10, interactive=False
        )
        analysis_output = gr.Textbox(
            label="Analysis Report", lines=10, interactive=False
        )
        download_pdf_button = gr.Button(
            "Download Analysis as PDF", visible=False, interactive=False
        )
        pdf_file = gr.File(label="Download PDF", interactive=False)

        analyze_button = gr.Button("Analyze CV")

        analyze_button.click(
            parse_cv,
            inputs=[file_input, job_desc_input],
            outputs=[extracted_text, analysis_output],
        ).then(
            toggle_download_button,
            inputs=[analysis_output],
            outputs=[download_pdf_button],
        )

        download_pdf_button.click(
            create_pdf_report, inputs=[analysis_output], outputs=[pdf_file]
        )

if __name__ == "__main__":
    demo.queue().launch()