Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import PyPDF2 | |
import io | |
from docx import Document | |
import os | |
# For PDF generation | |
from reportlab.pdfgen import canvas | |
from reportlab.lib.pagesizes import letter | |
from reportlab.lib import utils | |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer | |
from reportlab.lib.styles import getSampleStyleSheet | |
# Initialize the inference client from Hugging Face. | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def extract_text_from_pdf(pdf_file): | |
"""Extract text from PDF file.""" | |
try: | |
pdf_reader = PyPDF2.PdfReader(pdf_file) | |
text = "" | |
for page in pdf_reader.pages: | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + "\n" | |
return text.strip() or "No text could be extracted from the PDF." | |
except Exception as e: | |
return f"Error reading PDF: {e}" | |
def extract_text_from_docx(docx_file): | |
"""Extract text from DOCX file.""" | |
try: | |
doc = Document(docx_file) | |
text = "\n".join(para.text for para in doc.paragraphs) | |
return text.strip() or "No text could be extracted from the DOCX file." | |
except Exception as e: | |
return f"Error reading DOCX: {e}" | |
def parse_cv(file, job_description): | |
"""Analyze the CV, show the prompt (debug) and return LLM analysis.""" | |
if file is None: | |
return "Please upload a CV file.", "" | |
try: | |
file_path = file.name # Get the file path | |
file_ext = os.path.splitext(file_path)[1].lower() | |
if file_ext == ".pdf": | |
extracted_text = extract_text_from_pdf(file_path) | |
elif file_ext == ".docx": | |
extracted_text = extract_text_from_docx(file_path) | |
else: | |
return ( | |
"Unsupported file format. Please upload a PDF or DOCX file.", | |
"Unsupported file format.", | |
) | |
except Exception as e: | |
error_msg = f"Error reading file: {e}" | |
return error_msg, error_msg | |
# Check for extraction errors | |
if extracted_text.startswith("Error"): | |
return extracted_text, "Error during text extraction. Please check the file." | |
# Prepare debug prompt | |
prompt = ( | |
f"Analyze the CV against the job description. Provide a summary, assessment, " | |
f"and a score 0-10.\n\n" | |
f"Job Description:\n{job_description}\n\n" | |
f"Candidate CV:\n{extracted_text}\n" | |
) | |
# Call LLM | |
try: | |
analysis = client.text_generation(prompt, max_new_tokens=512) | |
# Show both the debug prompt and the LLM analysis in the "Analysis Report" | |
analysis_report = ( | |
f"--- DEBUG PROMPT ---\n{prompt}\n" | |
f"--- LLM ANALYSIS ---\n{analysis}" | |
) | |
return extracted_text, analysis_report | |
except Exception as e: | |
return extracted_text, f"Analysis Error: {e}" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
"""Generate chatbot response.""" | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
try: | |
for message_chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message_chunk.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"Error during chat generation: {e}" | |
def create_pdf_report(report_text): | |
"""Creates a PDF report using SimpleDocTemplate for better formatting.""" | |
if not report_text.strip(): | |
report_text = "No analysis report to convert." | |
buffer = io.BytesIO() | |
doc = SimpleDocTemplate(buffer, pagesize=letter) | |
styles = getSampleStyleSheet() | |
Story = [] | |
# Title | |
Story.append(Paragraph("<b>Analysis Report</b>", styles["Title"])) | |
Story.append(Spacer(1, 12)) | |
# Report Content | |
for line in report_text.split("\n"): | |
Story.append(Paragraph(line, styles["Normal"])) | |
Story.append(Spacer(1, 6)) # Add a small space between lines | |
doc.build(Story) | |
buffer.seek(0) | |
return buffer | |
def toggle_download_button(analysis_report): | |
"""Toggle the download button.""" | |
return gr.update( | |
interactive=bool(analysis_report.strip()), | |
visible=bool(analysis_report.strip()), | |
) | |
# Build the Gradio UI | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## AI-powered CV Analyzer and Chatbot") | |
with gr.Tab("Chatbot"): | |
chat_interface = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(value=[], label="Chatbot"), | |
textbox=gr.Textbox(placeholder="Enter your message here...", label="Message"), | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly Chatbot.", label="System message" | |
), | |
gr.Slider( | |
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
with gr.Tab("CV Analyzer"): | |
gr.Markdown("### Upload your CV and provide the job description") | |
file_input = gr.File(label="Upload CV", file_types=[".pdf", ".docx"]) | |
job_desc_input = gr.Textbox(label="Job Description", lines=5) | |
extracted_text = gr.Textbox( | |
label="Extracted CV Content", lines=10, interactive=False | |
) | |
analysis_output = gr.Textbox( | |
label="Analysis Report", lines=10, interactive=False | |
) | |
download_pdf_button = gr.Button( | |
"Download Analysis as PDF", visible=False, interactive=False | |
) | |
pdf_file = gr.File(label="Download PDF", interactive=False) | |
analyze_button = gr.Button("Analyze CV") | |
analyze_button.click( | |
parse_cv, | |
inputs=[file_input, job_desc_input], | |
outputs=[extracted_text, analysis_output], | |
).then( | |
toggle_download_button, | |
inputs=[analysis_output], | |
outputs=[download_pdf_button], | |
) | |
download_pdf_button.click( | |
create_pdf_report, inputs=[analysis_output], outputs=[pdf_file] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |