Project-Chatter / app.py
ruslanmv's picture
Update app.py
b956ac5
raw
history blame
8.85 kB
import gradio as gr
import zipfile
import os
import shutil
import subprocess
from chat_with_project import query_project
from get_prompts import get_prompt_for_mode
from dotenv import load_dotenv, set_key
from milvus import initialize_milvus, DEFAULT_MILVUS_HOST, DEFAULT_MILVUS_PORT, DEFAULT_COLLECTION_NAME, DEFAULT_DIMENSION, DEFAULT_MAX_RETRIES, DEFAULT_RETRY_DELAY
# --- Configuration and Setup ---
# Define paths for workspace and extraction directories
WORKSPACE_DIR = "workspace"
EXTRACTION_DIR = "extraction"
def clear_directories():
"""Clears the workspace and extraction directories."""
for directory in [WORKSPACE_DIR, EXTRACTION_DIR]:
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory, exist_ok=True)
# Clear directories at startup
clear_directories()
# --- API Key Management ---
def ensure_env_file_exists():
"""Ensures that a .env file exists in the project root."""
if not os.path.exists(".env"):
with open(".env", "w") as f:
f.write("") # Create an empty .env file
def load_api_key():
"""Loads the API key from the .env file or the environment."""
ensure_env_file_exists()
load_dotenv()
return os.environ.get("OPENAI_API_KEY")
def update_api_key(api_key):
"""Updates the API key in the .env file."""
if api_key:
set_key(".env", "OPENAI_API_KEY", api_key)
load_dotenv() # Reload environment variables
return "API key updated successfully."
else:
return "API key cannot be empty."
def is_api_key_set():
"""Checks if the API key is set."""
return bool(load_api_key())
# --- Core Functionalities ---
def process_zip(zip_file_path):
"""Extracts a zip file, analyzes content, and stores information."""
try:
# Clear existing workspace and extraction directories before processing
clear_directories()
# Extract the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(WORKSPACE_DIR)
# Run extract.py
subprocess.run(["python", "./utils/extract.py", WORKSPACE_DIR], check=True)
return "Processing complete! Results saved in the 'extraction' directory."
except Exception as e:
return f"An error occurred: {e}"
def init_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay):
"""Initializes or loads the Milvus vector database."""
try:
# Convert string inputs to appropriate types
milvus_port = int(milvus_port)
dimension = int(dimension)
max_retries = int(max_retries)
retry_delay = int(retry_delay)
initialize_milvus(milvus_host, milvus_port, collection_name, dimension, max_retries, retry_delay)
return "Milvus database initialized or loaded successfully."
except Exception as e:
return f"Error initializing Milvus: {e}"
# --- Chatbot Verification ---
def is_project_loaded():
"""Checks if a project has been loaded (i.e., if the extraction directory contains .pkl files)."""
extraction_dir = "extraction"
pkl_files = [f for f in os.listdir(extraction_dir) if f.endswith('.pkl')]
return bool(pkl_files)
# --- Gradio UI Components ---
# Chat Interface
def chat_ui(query, history, mode):
"""Handles the chat interaction for Analyzer, Debugger, and Developer modes."""
api_key = load_api_key()
if not api_key:
return "Error: OpenAI API key not set. Please set the API key in the Settings tab.", []
if not is_project_loaded():
return "Error: No project loaded. Please upload and process a ZIP file first.", []
# Initialize history if None
if history is None:
history = []
print(f"Chat Mode: {mode}")
system_prompt = get_prompt_for_mode(mode)
print(f"System Prompt: {system_prompt}")
# Pass the query and system prompt to the LLM
response = query_project(query, system_prompt)
print(f"Response from query_project: {response}")
if response is None or not response.strip():
response = "An error occurred during processing. Please check the logs."
if mode == "developer":
# Split the response into chunks based on "---"
chunks = response.split("---")
formatted_response_parts = []
for chunk in chunks:
if chunk.strip().startswith("BEGIN FILE:"):
# Extract filepath and code content
filepath = chunk.split("BEGIN FILE:")[1].split("\n")[0].strip()
code_content = chunk.replace(f"BEGIN FILE: {filepath}\n", "").strip()
# Remove "END FILE:" and its associated filepath if present at the end.
if code_content.rfind("END FILE:") != -1:
end_file_index = code_content.rfind("END FILE:")
code_content = code_content[:end_file_index].strip()
formatted_response_parts.append(f"**{filepath}:**\n`python\n{code_content}\n`")
elif chunk.strip():
formatted_response_parts.append(chunk.strip())
# Join the formatted parts with separators
formatted_response = "\n---\n".join(formatted_response_parts)
else:
# Format the output for non-developer modes
formatted_response = response.replace('\n', ' \n')
history.append((query, formatted_response))
return history, history
# ZIP Processing Interface
zip_iface = gr.Interface(
fn=process_zip,
inputs=gr.File(label="Upload ZIP File"),
outputs="text",
title="Zip File Analyzer",
description="Upload a zip file to analyze and store its contents.",
)
# Milvus Initialization Interface
milvus_iface = gr.Interface(
fn=init_milvus,
inputs=[
gr.Textbox(label="Milvus Host", placeholder=DEFAULT_MILVUS_HOST, value=DEFAULT_MILVUS_HOST),
gr.Textbox(label="Milvus Port", placeholder=DEFAULT_MILVUS_PORT, value=DEFAULT_MILVUS_PORT),
gr.Textbox(label="Collection Name", placeholder=DEFAULT_COLLECTION_NAME, value=DEFAULT_COLLECTION_NAME),
gr.Textbox(label="Dimension", placeholder=str(DEFAULT_DIMENSION), value=str(DEFAULT_DIMENSION)),
gr.Textbox(label="Max Retries", placeholder=str(DEFAULT_MAX_RETRIES), value=str(DEFAULT_MAX_RETRIES)),
gr.Textbox(label="Retry Delay (seconds)", placeholder=str(DEFAULT_RETRY_DELAY), value=str(DEFAULT_RETRY_DELAY))
],
outputs="text",
title="Milvus Database Initialization",
description="Initialize or load the Milvus vector database.",
)
# Gradio Chatbot UI Interface
chat_iface = gr.Interface(
fn=chat_ui,
inputs=[
gr.Textbox(label="Ask a question", placeholder="Type your question here"),
gr.State(), # Maintains chat history
gr.Radio(["analyzer", "debugger", "developer"], label="Chat Mode", value="analyzer")
],
outputs=[
gr.Chatbot(label="Chat with Project"),
"state" # This is to store the state,
],
title="Chat with your Project",
description="Ask questions about the data extracted from the zip file.",
# Example usage - Corrected to only include instruction and mode
examples=[
["What is this project about?", "analyzer"],
["Are there any potential bugs?", "debugger"],
["How does the data flow through the application?", "analyzer"],
["Explain the main components of the architecture.", "analyzer"],
["What are the dependencies of this project?", "analyzer"],
["Are there any potential memory leaks?", "debugger"],
["Identify any areas where the code could be optimized.","debugger"],
["Implement basic logging for the main application and save logs to a file.", "developer"],
["Use try/except blocks in main functions to handle exceptions", "developer"]
],
)
# Settings Interface
settings_iface = gr.Interface(
fn=update_api_key,
inputs=gr.Textbox(label="OpenAI API Key", type="password"),
outputs="text",
title="Settings",
description="Set your OpenAI API key.",
)
# Status Interface
def get_api_key_status():
if is_api_key_set():
return "API key status: Set"
else:
return "API key status: Not set"
status_iface = gr.Interface(
fn=get_api_key_status,
inputs=None,
outputs="text",
live=True,
title="API Key Status"
)
# Add credits to the UI
credits = gr.Markdown("## Credits\n\nCreated by [Ruslan Magana Vsevolodovna](https://ruslanmv.com/)")
# --- Main Application Launch ---
# Combine the interfaces using Tabs
demo = gr.TabbedInterface(
[zip_iface, milvus_iface, chat_iface, settings_iface, status_iface],
["Process ZIP", "Init Milvus", "Chat with Project", "Settings", "Status"],
)
# Launch the app with credits
demo.queue().launch()