File size: 7,997 Bytes
473311a
 
99ef832
473311a
99ef832
473311a
99ef832
473311a
 
 
99ef832
473311a
 
 
 
 
 
 
 
99ef832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473311a
 
99ef832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473311a
 
 
99ef832
473311a
 
99ef832
 
 
 
 
473311a
99ef832
 
473311a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ef832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473311a
 
 
 
99ef832
 
 
 
473311a
 
 
 
 
 
99ef832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473311a
99ef832
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import torch
import os
from PIL import Image
from transformers import AutoProcessor, MllamaForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import gc

# Page config
st.set_page_config(
    page_title="Deepfake Image Analyzer",
    page_icon="πŸ”",
    layout="wide"
)

# App title and description
st.title("Deepfake Image Analyzer")
st.markdown("Upload an image to analyze it for possible deepfake manipulation")

# Function to free up memory
def free_memory():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

# Helper functions
def init_device():
    """Set the appropriate device and return it"""
    if torch.cuda.is_available():
        st.sidebar.success("βœ“ GPU available: Using CUDA")
        return "cuda"
    else:
        st.sidebar.warning("⚠️ No GPU detected: Using CPU (analysis will be slow)")
        return "cpu"

# Set device
device = init_device()

@st.cache_resource
def load_model():
    """Load model and processor with caching to avoid reloading"""
    try:
        # Load base model
        base_model_id = "unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit"
        processor = AutoProcessor.from_pretrained(base_model_id)
        
        # Configure 4-bit quantization with correct dtype
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )
        
        # Load model with explicit dtype settings using MllamaForCausalLM
        model = MllamaForCausalLM.from_pretrained(
            base_model_id, 
            device_map="auto",
            torch_dtype=torch.float16,
            quantization_config=quantization_config
        )
        
        # Load adapter
        adapter_id = "saakshigupta/deepfake-explainer-1"
        model = PeftModel.from_pretrained(model, adapter_id)
        
        return model, processor
            
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None, None

# Function to fix cross-attention masks
def fix_processor_outputs(inputs):
    """Fix cross-attention mask dimensions if needed"""
    if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
        batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
        visual_features = 6404  # The exact dimension used in training
        new_mask = torch.ones(
            (batch_size, seq_len, visual_features, num_tiles),
            device=inputs['cross_attention_mask'].device
        )
        inputs['cross_attention_mask'] = new_mask
        return True, inputs
    return False, inputs

# Create sidebar with options
with st.sidebar:
    st.header("Options")
    temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1,
                           help="Higher values make output more random, lower values more deterministic")
    max_length = st.slider("Maximum response length", min_value=100, max_value=1000, value=500, step=50)
    
    custom_prompt = st.text_area(
        "Custom instruction (optional)",
        value="Analyze this image and determine if it's a deepfake. Provide both technical and non-technical explanations.",
        height=100
    )
    
    st.markdown("### About")
    st.markdown("""
    This app uses a fine-tuned Llama 3.2 Vision model to detect and explain deepfakes.
    
    The analyzer looks for:
    - Inconsistencies in facial features
    - Unusual lighting or shadows
    - Unnatural blur patterns
    - Artifacts around edges
    - Texture inconsistencies
    
    Model by [saakshigupta](https://huggingface.co/saakshigupta/deepfake-explainer-1)
    """)

# Load model on app startup with a progress bar
if 'model_loaded' not in st.session_state:
    progress_bar = st.progress(0)
    st.info("Loading model... this may take a minute.")
    
    for i in range(10):
        # Simulate progress while model loads
        progress_bar.progress((i + 1) * 10)
        if i == 2:
            # Start loading the model at 30% progress
            model, processor = load_model()
            if model is not None:
                st.session_state['model'] = model
                st.session_state['processor'] = processor
                st.session_state['model_loaded'] = True
    
    progress_bar.empty()
    
    if 'model_loaded' in st.session_state and st.session_state['model_loaded']:
        st.success("Model loaded successfully!")
    else:
        st.error("Failed to load model. Try refreshing the page.")

# Main content area - file uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

# Check if model is loaded
model_loaded = 'model_loaded' in st.session_state and st.session_state['model_loaded']

if uploaded_file is not None and model_loaded:
    # Display the image
    image = Image.open(uploaded_file).convert('RGB')
    st.image(image, caption="Uploaded Image", use_column_width=True)
    
    # Analyze button
    if st.button("Analyze Image"):
        with st.spinner("Analyzing the image... This may take 15-30 seconds"):
            try:
                # Get components from session state
                model = st.session_state['model']
                processor = st.session_state['processor']
                
                # Process the image
                inputs = processor(text=custom_prompt, images=image, return_tensors="pt")
                
                # Fix cross-attention mask
                fixed, inputs = fix_processor_outputs(inputs)
                if fixed:
                    st.info("Fixed cross-attention mask dimensions")
                
                # Move to device
                inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
                
                # Generate the analysis
                with torch.no_grad():
                    output_ids = model.generate(
                        **inputs,
                        max_new_tokens=max_length,
                        temperature=temperature,
                        top_p=0.9
                    )
                
                # Decode the output
                response = processor.decode(output_ids[0], skip_special_tokens=True)
                
                # Extract the actual response (removing the prompt)
                if custom_prompt in response:
                    result = response.split(custom_prompt)[-1].strip()
                else:
                    result = response
                
                # Display result in a nice format
                st.success("Analysis complete!")
                
                # Show technical and non-technical explanations separately if they exist
                if "Technical Explanation:" in result and "Non-Technical Explanation:" in result:
                    technical, non_technical = result.split("Non-Technical Explanation:")
                    technical = technical.replace("Technical Explanation:", "").strip()
                    
                    col1, col2 = st.columns(2)
                    with col1:
                        st.subheader("Technical Analysis")
                        st.write(technical)
                    
                    with col2:
                        st.subheader("Simple Explanation")
                        st.write(non_technical)
                else:
                    st.subheader("Analysis Result")
                    st.write(result)
                
                # Free memory after analysis
                free_memory()
                
            except Exception as e:
                st.error(f"Error analyzing image: {str(e)}")
else:
    st.info("Please upload an image to begin analysis")

# Add footer
st.markdown("---")
st.markdown("Deepfake Image Analyzer")