Update app.py
Browse files
app.py
CHANGED
@@ -40,22 +40,7 @@ def check_gpu():
|
|
40 |
return False
|
41 |
|
42 |
# Sidebar components
|
43 |
-
st.sidebar.title("
|
44 |
-
|
45 |
-
# Fixed values for temperature and max tokens
|
46 |
-
temperature = 0.7
|
47 |
-
max_tokens = 500
|
48 |
-
|
49 |
-
# Custom instruction text area in sidebar
|
50 |
-
custom_instruction = st.sidebar.text_area(
|
51 |
-
"Custom Instructions (Advanced)",
|
52 |
-
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
|
53 |
-
help="Add specific instructions for the LLM analysis"
|
54 |
-
)
|
55 |
-
|
56 |
-
# About section in sidebar
|
57 |
-
st.sidebar.markdown("---")
|
58 |
-
st.sidebar.subheader("About")
|
59 |
st.sidebar.markdown("""
|
60 |
This analyzer performs multi-stage detection:
|
61 |
1. **Initial Detection**: CLIP-based classifier
|
@@ -72,6 +57,17 @@ The system looks for:
|
|
72 |
- Blending problems
|
73 |
""")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# ----- GradCAM Implementation -----
|
76 |
|
77 |
class ImageDataset(torch.utils.data.Dataset):
|
@@ -768,8 +764,6 @@ def main():
|
|
768 |
# Image Analysis Summary section - AFTER Stage 2
|
769 |
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
770 |
with st.expander("Image Analysis Summary", expanded=True):
|
771 |
-
st.subheader("Generated Descriptions and Analysis")
|
772 |
-
|
773 |
# Display image, captions, and results in organized layout with proper formatting
|
774 |
col1, col2 = st.columns([1, 2])
|
775 |
|
@@ -780,12 +774,6 @@ def main():
|
|
780 |
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
781 |
|
782 |
with col2:
|
783 |
-
# Detection result
|
784 |
-
if hasattr(st.session_state, 'current_pred_label'):
|
785 |
-
st.markdown("### Detection Result")
|
786 |
-
st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
|
787 |
-
st.markdown("---")
|
788 |
-
|
789 |
# Image description
|
790 |
if hasattr(st.session_state, 'image_caption'):
|
791 |
st.markdown("### Image Description")
|
|
|
40 |
return False
|
41 |
|
42 |
# Sidebar components
|
43 |
+
st.sidebar.title("About")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
st.sidebar.markdown("""
|
45 |
This analyzer performs multi-stage detection:
|
46 |
1. **Initial Detection**: CLIP-based classifier
|
|
|
57 |
- Blending problems
|
58 |
""")
|
59 |
|
60 |
+
# Fixed values for temperature and max tokens
|
61 |
+
temperature = 0.7
|
62 |
+
max_tokens = 500
|
63 |
+
|
64 |
+
# Custom instruction text area in sidebar
|
65 |
+
custom_instruction = st.sidebar.text_area(
|
66 |
+
"Custom Instructions (Advanced)",
|
67 |
+
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
|
68 |
+
help="Add specific instructions for the LLM analysis"
|
69 |
+
)
|
70 |
+
|
71 |
# ----- GradCAM Implementation -----
|
72 |
|
73 |
class ImageDataset(torch.utils.data.Dataset):
|
|
|
764 |
# Image Analysis Summary section - AFTER Stage 2
|
765 |
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
766 |
with st.expander("Image Analysis Summary", expanded=True):
|
|
|
|
|
767 |
# Display image, captions, and results in organized layout with proper formatting
|
768 |
col1, col2 = st.columns([1, 2])
|
769 |
|
|
|
774 |
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
775 |
|
776 |
with col2:
|
|
|
|
|
|
|
|
|
|
|
|
|
777 |
# Image description
|
778 |
if hasattr(st.session_state, 'image_caption'):
|
779 |
st.markdown("### Image Description")
|