Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,38 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
import pandas as pd
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
7 |
|
8 |
|
9 |
from token_classifier import load_token_classifier, predict
|
10 |
from model import Model
|
11 |
from dataset import RetrievalDataset
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
# Load model and configurations
|
@@ -21,7 +47,6 @@ def load_model():
|
|
21 |
|
22 |
|
23 |
def process_single_query(model, query_image_path, query_text, database_embeddings, database_df):
|
24 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
# Process query image
|
27 |
query_img = model.processor(Image.open(query_image_path)).unsqueeze(0).to(device)
|
|
|
4 |
from PIL import Image
|
5 |
import pandas as pd
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from tqdm import tqdm
|
8 |
|
9 |
|
10 |
from token_classifier import load_token_classifier, predict
|
11 |
from model import Model
|
12 |
from dataset import RetrievalDataset
|
13 |
+
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
batch_size = 512
|
16 |
+
|
17 |
+
|
18 |
+
def encode_database(model, df: pd.DataFrame) -> np.ndarray :
|
19 |
+
"""
|
20 |
+
Process database images and generate embeddings.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
df (pd. DataFrame ): DataFrame with column:
|
24 |
+
- target_image: str, paths to database images
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
np.ndarray: Embeddings array (num_images, embedding_dim)
|
28 |
+
"""
|
29 |
+
model.eval()
|
30 |
+
all_embeddings = []
|
31 |
+
for i in tqdm(range(0, len(df), batch_size)):
|
32 |
+
target_imgs = torch.stack([model.processor(Image.open(target_image_path)) for target_image_path in df['target_image'][i:i+batch_size]]).to(device)
|
33 |
+
with torch.no_grad():
|
34 |
+
# target_imgs_embedding = model.encode_database_image(target_imgs)
|
35 |
+
target_imgs_embedding = model.feature_extractor.encode_image(target_imgs)
|
36 |
+
target_imgs_embedding = torch.nn.functional.normalize(target_imgs_embedding, dim=1, p=2)
|
37 |
+
all_embeddings.append(target_imgs_embedding.detach().cpu().numpy())
|
38 |
+
return np.concatenate(all_embeddings)
|
39 |
|
40 |
|
41 |
# Load model and configurations
|
|
|
47 |
|
48 |
|
49 |
def process_single_query(model, query_image_path, query_text, database_embeddings, database_df):
|
|
|
50 |
|
51 |
# Process query image
|
52 |
query_img = model.processor(Image.open(query_image_path)).unsqueeze(0).to(device)
|