Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
|
4 |
# Load models
|
5 |
chatbot_model = "microsoft/DialoGPT-medium"
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(chatbot_model)
|
8 |
-
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
9 |
-
|
10 |
-
# Store chat histories
|
11 |
-
chat_histories = {}
|
12 |
-
|
13 |
def chatbot_response(message, session_id="default"):
|
14 |
-
"""Core function that handles both chat and emotion analysis"""
|
15 |
if session_id not in chat_histories:
|
16 |
chat_histories[session_id] = []
|
17 |
-
|
18 |
-
# Generate
|
19 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
20 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
21 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
22 |
-
|
23 |
# Detect emotion
|
24 |
emotion_result = emotion_pipeline(message)
|
25 |
emotion = emotion_result[0]["label"]
|
26 |
score = float(emotion_result[0]["score"])
|
27 |
-
|
28 |
# Store history
|
29 |
chat_histories[session_id].append((message, response))
|
30 |
return response, emotion, score
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
"""Endpoint for /predict that returns JSON"""
|
35 |
-
response, emotion, score = chatbot_response(message, session_id)
|
36 |
-
return {
|
37 |
-
"response": response,
|
38 |
-
"emotion": emotion,
|
39 |
-
"score": score,
|
40 |
-
"session_id": session_id
|
41 |
-
}
|
42 |
-
|
43 |
-
# ------------------ Web Interface ------------------
|
44 |
-
with gr.Blocks(title="Mental Health Chatbot") as web_interface:
|
45 |
gr.Markdown("# 🤖 Mental Health Chatbot")
|
46 |
-
|
47 |
with gr.Row():
|
48 |
-
with gr.Column():
|
49 |
-
chatbot = gr.Chatbot(height=400)
|
50 |
-
msg = gr.Textbox(placeholder="Type your message...", label="You")
|
51 |
-
with gr.Row():
|
52 |
-
session_id = gr.Textbox(label="Session ID", value="default")
|
53 |
-
submit_btn = gr.Button("Send", variant="primary")
|
54 |
-
clear_btn = gr.Button("Clear")
|
55 |
-
|
56 |
-
with gr.Column():
|
57 |
-
emotion_out = gr.Textbox(label="Detected Emotion")
|
58 |
-
score_out = gr.Number(label="Confidence Score")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
submit_btn.click(
|
66 |
-
respond,
|
67 |
-
[msg, chatbot, session_id],
|
68 |
-
[msg, chatbot, emotion_out, score_out]
|
69 |
-
)
|
70 |
-
msg.submit(
|
71 |
-
respond,
|
72 |
-
[msg, chatbot, session_id],
|
73 |
-
[msg, chatbot, emotion_out, score_out]
|
74 |
-
)
|
75 |
-
clear_btn.click(
|
76 |
-
lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0),
|
77 |
-
[session_id],
|
78 |
-
[chatbot, emotion_out, score_out]
|
79 |
-
)
|
80 |
|
81 |
-
# ------------------ Mount Interfaces ------------------
|
82 |
-
app = gr.mount_gradio_app(
|
83 |
-
gr.routes.App(),
|
84 |
-
web_interface,
|
85 |
-
path="/"
|
86 |
-
)
|
87 |
|
88 |
-
app = gr.mount_gradio_app(
|
89 |
-
app,
|
90 |
-
gr.Interface(
|
91 |
-
fn=api_predict,
|
92 |
-
inputs=[gr.Textbox(), gr.Textbox()],
|
93 |
-
outputs=gr.JSON(),
|
94 |
-
title="API Predict",
|
95 |
-
description="Use this endpoint for programmatic access"
|
96 |
-
),
|
97 |
-
path="/predict"
|
98 |
-
)
|
99 |
|
100 |
-
#
|
101 |
if __name__ == "__main__":
|
102 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import json
|
4 |
|
5 |
# Load models
|
6 |
chatbot_model = "microsoft/DialoGPT-medium"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def chatbot_response(message, session_id="default"):
|
|
|
8 |
if session_id not in chat_histories:
|
9 |
chat_histories[session_id] = []
|
10 |
+
|
11 |
+
# Generate response
|
12 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
13 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
14 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
15 |
+
|
16 |
# Detect emotion
|
17 |
emotion_result = emotion_pipeline(message)
|
18 |
emotion = emotion_result[0]["label"]
|
19 |
score = float(emotion_result[0]["score"])
|
20 |
+
|
21 |
# Store history
|
22 |
chat_histories[session_id].append((message, response))
|
23 |
return response, emotion, score
|
24 |
|
25 |
+
# Gradio Interface (Primary for Spaces)
|
26 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
gr.Markdown("# 🤖 Mental Health Chatbot")
|
|
|
28 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
btn.click(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
31 |
+
msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot, emotion_out, score_out])
|
32 |
+
clear_btn.click(lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0),
|
33 |
+
inputs=[session_id],
|
34 |
+
outputs=[chatbot, emotion_out, score_out])
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# For Hugging Face Spaces, Gradio must be the main interface
|
44 |
if __name__ == "__main__":
|
45 |
+
demo.launch()
|