Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,11 @@ emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-eng
|
|
11 |
chat_histories = {}
|
12 |
|
13 |
def chatbot_response(message, session_id="default"):
|
|
|
14 |
if session_id not in chat_histories:
|
15 |
chat_histories[session_id] = []
|
16 |
|
17 |
-
# Generate response
|
18 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
19 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
20 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
@@ -28,16 +29,30 @@ def chatbot_response(message, session_id="default"):
|
|
28 |
chat_histories[session_id].append((message, response))
|
29 |
return response, emotion, score
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# ------------------ Web Interface ------------------
|
32 |
-
with gr.Blocks() as
|
33 |
gr.Markdown("# 🤖 Mental Health Chatbot")
|
|
|
34 |
with gr.Row():
|
35 |
with gr.Column():
|
36 |
-
chatbot = gr.Chatbot()
|
37 |
-
msg = gr.Textbox(
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
with gr.Column():
|
42 |
emotion_out = gr.Textbox(label="Detected Emotion")
|
43 |
score_out = gr.Number(label="Confidence Score")
|
@@ -47,19 +62,41 @@ with gr.Blocks() as demo:
|
|
47 |
chat_history.append((message, response))
|
48 |
return "", chat_history, emotion, score
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
|
63 |
-
# ------------------ Launch
|
64 |
-
|
65 |
-
|
|
|
11 |
chat_histories = {}
|
12 |
|
13 |
def chatbot_response(message, session_id="default"):
|
14 |
+
"""Core function that handles both chat and emotion analysis"""
|
15 |
if session_id not in chat_histories:
|
16 |
chat_histories[session_id] = []
|
17 |
|
18 |
+
# Generate chatbot response
|
19 |
input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
20 |
output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
21 |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
|
|
29 |
chat_histories[session_id].append((message, response))
|
30 |
return response, emotion, score
|
31 |
|
32 |
+
# ------------------ API Interface ------------------
|
33 |
+
def api_predict(message: str, session_id: str = "default"):
|
34 |
+
"""Endpoint for /predict that returns JSON"""
|
35 |
+
response, emotion, score = chatbot_response(message, session_id)
|
36 |
+
return {
|
37 |
+
"response": response,
|
38 |
+
"emotion": emotion,
|
39 |
+
"score": score,
|
40 |
+
"session_id": session_id
|
41 |
+
}
|
42 |
+
|
43 |
# ------------------ Web Interface ------------------
|
44 |
+
with gr.Blocks(title="Mental Health Chatbot") as web_interface:
|
45 |
gr.Markdown("# 🤖 Mental Health Chatbot")
|
46 |
+
|
47 |
with gr.Row():
|
48 |
with gr.Column():
|
49 |
+
chatbot = gr.Chatbot(height=400)
|
50 |
+
msg = gr.Textbox(placeholder="Type your message...", label="You")
|
51 |
+
with gr.Row():
|
52 |
+
session_id = gr.Textbox(label="Session ID", value="default")
|
53 |
+
submit_btn = gr.Button("Send", variant="primary")
|
54 |
+
clear_btn = gr.Button("Clear")
|
55 |
+
|
56 |
with gr.Column():
|
57 |
emotion_out = gr.Textbox(label="Detected Emotion")
|
58 |
score_out = gr.Number(label="Confidence Score")
|
|
|
62 |
chat_history.append((message, response))
|
63 |
return "", chat_history, emotion, score
|
64 |
|
65 |
+
submit_btn.click(
|
66 |
+
respond,
|
67 |
+
[msg, chatbot, session_id],
|
68 |
+
[msg, chatbot, emotion_out, score_out]
|
69 |
+
)
|
70 |
+
msg.submit(
|
71 |
+
respond,
|
72 |
+
[msg, chatbot, session_id],
|
73 |
+
[msg, chatbot, emotion_out, score_out]
|
74 |
+
)
|
75 |
+
clear_btn.click(
|
76 |
+
lambda s_id: ([], "", 0.0) if s_id in chat_histories else ([], "", 0.0),
|
77 |
+
[session_id],
|
78 |
+
[chatbot, emotion_out, score_out]
|
79 |
+
)
|
80 |
+
|
81 |
+
# ------------------ Mount Interfaces ------------------
|
82 |
+
app = gr.mount_gradio_app(
|
83 |
+
gr.routes.App(),
|
84 |
+
web_interface,
|
85 |
+
path="/"
|
86 |
+
)
|
87 |
|
88 |
+
app = gr.mount_gradio_app(
|
89 |
+
app,
|
90 |
+
gr.Interface(
|
91 |
+
fn=api_predict,
|
92 |
+
inputs=[gr.Textbox(), gr.Textbox()],
|
93 |
+
outputs=gr.JSON(),
|
94 |
+
title="API Predict",
|
95 |
+
description="Use this endpoint for programmatic access"
|
96 |
+
),
|
97 |
+
path="/predict"
|
98 |
)
|
99 |
|
100 |
+
# ------------------ Launch ------------------
|
101 |
+
if __name__ == "__main__":
|
102 |
+
app.launch(show_api=False) # We manually mounted our API
|