Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import pipeline, AutoTokenizer | |
import nltk | |
import os | |
import uvicorn | |
from chunker import chunk_by_token_limit | |
nltk.download('punkt', quiet=True) | |
app = FastAPI() | |
HF_AUTH_TOKEN = os.getenv("HF_TOKEN") | |
MODEL_NAME = "VincentMuriuki/legal-summarizer" | |
summarizer = pipeline("summarization", model=MODEL_NAME, use_auth_token=HF_AUTH_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_AUTH_TOKEN) | |
class SummarizeInput(BaseModel): | |
text: str | |
class ChunkInput(BaseModel): | |
text: str | |
max_tokens: int = 1024 | |
def summarize_text(data: SummarizeInput): | |
summary = summarizer(data.text, max_length=150, min_length=30, do_sample=False) | |
return {"summary": summary[0]["summary_text"]} | |
def chunk_text(data: ChunkInput): | |
chunks = chunk_by_token_limit(data.text, data.max_tokens, tokenizer) | |
return {"chunks": chunks} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |