app.py
CHANGED
|
@@ -1,315 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
from transformers import BlipProcessor, BlipForQuestionAnswering
|
| 5 |
-
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
| 6 |
-
import requests
|
| 7 |
-
from io import BytesIO
|
| 8 |
-
import logging
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
logger.info(f"Using device: {self.device}")
|
| 18 |
-
|
| 19 |
-
# Initialize models
|
| 20 |
-
self.models = {}
|
| 21 |
-
self.processors = {}
|
| 22 |
-
self.current_model = "blip2"
|
| 23 |
-
|
| 24 |
-
# Load models
|
| 25 |
-
self.load_models()
|
| 26 |
-
|
| 27 |
-
def load_models(self):
|
| 28 |
-
"""Load all available VQA models"""
|
| 29 |
-
try:
|
| 30 |
-
# BLIP-2 (Recommended for best performance)
|
| 31 |
-
logger.info("Loading BLIP-2 model...")
|
| 32 |
-
self.processors["blip2"] = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 33 |
-
self.models["blip2"] = Blip2ForConditionalGeneration.from_pretrained(
|
| 34 |
-
"Salesforce/blip2-opt-2.7b",
|
| 35 |
-
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
|
| 36 |
-
).to(self.device)
|
| 37 |
-
|
| 38 |
-
# Original BLIP (Faster but less accurate)
|
| 39 |
-
logger.info("Loading BLIP model...")
|
| 40 |
-
self.processors["blip"] = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 41 |
-
self.models["blip"] = BlipForQuestionAnswering.from_pretrained(
|
| 42 |
-
"Salesforce/blip-vqa-base"
|
| 43 |
-
).to(self.device)
|
| 44 |
-
|
| 45 |
-
logger.info("All models loaded successfully!")
|
| 46 |
-
|
| 47 |
-
except Exception as e:
|
| 48 |
-
logger.error(f"Error loading models: {str(e)}")
|
| 49 |
-
raise e
|
| 50 |
-
|
| 51 |
-
def answer_question(self, image, question, model_choice="blip2", max_length=50):
|
| 52 |
-
"""
|
| 53 |
-
Answer a question about an image using the selected model
|
| 54 |
-
|
| 55 |
-
Args:
|
| 56 |
-
image: PIL Image or path to image
|
| 57 |
-
question: String question about the image
|
| 58 |
-
model_choice: Model to use ("blip2" or "blip")
|
| 59 |
-
max_length: Maximum length of generated answer
|
| 60 |
-
|
| 61 |
-
Returns:
|
| 62 |
-
String answer to the question
|
| 63 |
-
"""
|
| 64 |
-
try:
|
| 65 |
-
if image is None:
|
| 66 |
-
return "Please upload an image first."
|
| 67 |
-
|
| 68 |
-
if not question.strip():
|
| 69 |
-
return "Please ask a question about the image."
|
| 70 |
-
|
| 71 |
-
# Ensure image is PIL Image
|
| 72 |
-
if isinstance(image, str):
|
| 73 |
-
if image.startswith('http'):
|
| 74 |
-
response = requests.get(image)
|
| 75 |
-
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 76 |
-
else:
|
| 77 |
-
image = Image.open(image).convert('RGB')
|
| 78 |
-
elif not isinstance(image, Image.Image):
|
| 79 |
-
image = Image.fromarray(image).convert('RGB')
|
| 80 |
-
|
| 81 |
-
# Get model and processor
|
| 82 |
-
model = self.models[model_choice]
|
| 83 |
-
processor = self.processors[model_choice]
|
| 84 |
-
|
| 85 |
-
if model_choice == "blip2":
|
| 86 |
-
# BLIP-2 processing
|
| 87 |
-
inputs = processor(image, question, return_tensors="pt").to(self.device)
|
| 88 |
-
|
| 89 |
-
with torch.no_grad():
|
| 90 |
-
generated_ids = model.generate(
|
| 91 |
-
**inputs,
|
| 92 |
-
max_length=max_length,
|
| 93 |
-
num_beams=5,
|
| 94 |
-
temperature=0.7,
|
| 95 |
-
do_sample=True,
|
| 96 |
-
top_p=0.9
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
answer = processor.decode(generated_ids[0], skip_special_tokens=True)
|
| 100 |
-
|
| 101 |
-
else: # blip
|
| 102 |
-
# Original BLIP processing
|
| 103 |
-
inputs = processor(image, question, return_tensors="pt").to(self.device)
|
| 104 |
-
|
| 105 |
-
with torch.no_grad():
|
| 106 |
-
outputs = model.generate(**inputs, max_length=max_length, num_beams=5)
|
| 107 |
-
|
| 108 |
-
answer = processor.decode(outputs[0], skip_special_tokens=True)
|
| 109 |
-
|
| 110 |
-
return answer.strip()
|
| 111 |
-
|
| 112 |
-
except Exception as e:
|
| 113 |
-
logger.error(f"Error in answer_question: {str(e)}")
|
| 114 |
-
return f"Error processing question: {str(e)}"
|
| 115 |
-
|
| 116 |
-
def batch_qa(self, image, questions_text):
|
| 117 |
-
"""
|
| 118 |
-
Answer multiple questions about the same image
|
| 119 |
-
|
| 120 |
-
Args:
|
| 121 |
-
image: PIL Image
|
| 122 |
-
questions_text: String with questions separated by newlines
|
| 123 |
-
|
| 124 |
-
Returns:
|
| 125 |
-
String with questions and answers
|
| 126 |
-
"""
|
| 127 |
-
if not questions_text.strip():
|
| 128 |
-
return "Please enter questions (one per line)."
|
| 129 |
-
|
| 130 |
-
questions = [q.strip() for q in questions_text.split('\n') if q.strip()]
|
| 131 |
-
results = []
|
| 132 |
-
|
| 133 |
-
for i, question in enumerate(questions, 1):
|
| 134 |
-
answer = self.answer_question(image, question, self.current_model)
|
| 135 |
-
results.append(f"Q{i}: {question}")
|
| 136 |
-
results.append(f"A{i}: {answer}")
|
| 137 |
-
results.append("")
|
| 138 |
-
|
| 139 |
-
return "\n".join(results)
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
vqa_app = VQAApp()
|
| 146 |
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
"https://huggingface.co/datasets/Narsil/image_dummy/raw/main/lena.png"
|
| 151 |
-
]
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
# 🔍 Visual Question Answering App
|
| 156 |
-
|
| 157 |
-
Upload an image and ask questions about its content! This app uses state-of-the-art multimodal models
|
| 158 |
-
from Hugging Face to understand and answer questions about images.
|
| 159 |
-
|
| 160 |
-
**Models available:**
|
| 161 |
-
- **BLIP-2**: Advanced model with better understanding (recommended)
|
| 162 |
-
- **BLIP**: Faster model for quick answers
|
| 163 |
-
""")
|
| 164 |
-
|
| 165 |
-
with gr.Tab("Single Question"):
|
| 166 |
-
with gr.Row():
|
| 167 |
-
with gr.Column(scale=1):
|
| 168 |
-
image_input = gr.Image(
|
| 169 |
-
label="Upload Image",
|
| 170 |
-
type="pil",
|
| 171 |
-
height=300
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
model_choice = gr.Dropdown(
|
| 175 |
-
choices=["blip2", "blip"],
|
| 176 |
-
value="blip2",
|
| 177 |
-
label="Choose Model",
|
| 178 |
-
info="BLIP-2 is more accurate but slower"
|
| 179 |
-
)
|
| 180 |
-
|
| 181 |
-
max_length_slider = gr.Slider(
|
| 182 |
-
minimum=10,
|
| 183 |
-
maximum=100,
|
| 184 |
-
value=50,
|
| 185 |
-
step=5,
|
| 186 |
-
label="Max Answer Length"
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
with gr.Column(scale=1):
|
| 190 |
-
question_input = gr.Textbox(
|
| 191 |
-
label="Ask a question about the image",
|
| 192 |
-
placeholder="What do you see in this image?",
|
| 193 |
-
lines=3
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
answer_button = gr.Button("Get Answer", variant="primary", size="lg")
|
| 197 |
-
|
| 198 |
-
answer_output = gr.Textbox(
|
| 199 |
-
label="Answer",
|
| 200 |
-
lines=5,
|
| 201 |
-
interactive=False
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
# Example questions
|
| 205 |
-
gr.Markdown("### Example Questions:")
|
| 206 |
-
example_questions = [
|
| 207 |
-
"What objects are in this image?",
|
| 208 |
-
"What color is the main subject?",
|
| 209 |
-
"How many people are in the image?",
|
| 210 |
-
"What is the setting or location?",
|
| 211 |
-
"What activity is taking place?",
|
| 212 |
-
"What's the weather like in this image?"
|
| 213 |
-
]
|
| 214 |
-
|
| 215 |
-
with gr.Row():
|
| 216 |
-
for i, eq in enumerate(example_questions[:3]):
|
| 217 |
-
gr.Button(eq, size="sm").click(
|
| 218 |
-
lambda q=eq: q, outputs=question_input
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
with gr.Row():
|
| 222 |
-
for i, eq in enumerate(example_questions[3:]):
|
| 223 |
-
gr.Button(eq, size="sm").click(
|
| 224 |
-
lambda q=eq: q, outputs=question_input
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
with gr.Tab("Multiple Questions"):
|
| 228 |
-
with gr.Row():
|
| 229 |
-
with gr.Column(scale=1):
|
| 230 |
-
batch_image_input = gr.Image(
|
| 231 |
-
label="Upload Image",
|
| 232 |
-
type="pil",
|
| 233 |
-
height=300
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
batch_model_choice = gr.Dropdown(
|
| 237 |
-
choices=["blip2", "blip"],
|
| 238 |
-
value="blip2",
|
| 239 |
-
label="Choose Model"
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
with gr.Column(scale=1):
|
| 243 |
-
batch_questions_input = gr.Textbox(
|
| 244 |
-
label="Questions (one per line)",
|
| 245 |
-
placeholder="What do you see?\nHow many objects are there?\nWhat color is dominant?",
|
| 246 |
-
lines=6
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
batch_button = gr.Button("Answer All Questions", variant="primary")
|
| 250 |
-
|
| 251 |
-
batch_output = gr.Textbox(
|
| 252 |
-
label="Questions & Answers",
|
| 253 |
-
lines=10,
|
| 254 |
-
interactive=False
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
with gr.Tab("Sample Images"):
|
| 258 |
-
gr.Markdown("### Try these sample images:")
|
| 259 |
-
|
| 260 |
-
with gr.Row():
|
| 261 |
-
for img_url in sample_images:
|
| 262 |
-
with gr.Column():
|
| 263 |
-
sample_img = gr.Image(value=img_url, label="Sample Image")
|
| 264 |
-
gr.Button("Use This Image").click(
|
| 265 |
-
lambda x=img_url: x,
|
| 266 |
-
outputs=image_input
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
# Event handlers
|
| 270 |
-
def update_model_choice(choice):
|
| 271 |
-
vqa_app.current_model = choice
|
| 272 |
-
return choice
|
| 273 |
-
|
| 274 |
-
model_choice.change(update_model_choice, inputs=model_choice)
|
| 275 |
-
batch_model_choice.change(update_model_choice, inputs=batch_model_choice)
|
| 276 |
-
|
| 277 |
-
answer_button.click(
|
| 278 |
-
vqa_app.answer_question,
|
| 279 |
-
inputs=[image_input, question_input, model_choice, max_length_slider],
|
| 280 |
-
outputs=answer_output
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
batch_button.click(
|
| 284 |
-
vqa_app.batch_qa,
|
| 285 |
-
inputs=[batch_image_input, batch_questions_input],
|
| 286 |
-
outputs=batch_output
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
gr.Markdown("""
|
| 290 |
-
### Tips for better results:
|
| 291 |
-
- Use clear, specific questions
|
| 292 |
-
- BLIP-2 works better for complex reasoning
|
| 293 |
-
- Try different phrasings if you don't get good results
|
| 294 |
-
- Upload high-quality images for best performance
|
| 295 |
-
""")
|
| 296 |
-
|
| 297 |
-
return demo
|
| 298 |
|
| 299 |
-
#
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
| 309 |
|
| 310 |
if __name__ == "__main__":
|
| 311 |
-
demo = create_gradio_interface()
|
| 312 |
-
|
| 313 |
demo.launch()
|
| 314 |
-
|
| 315 |
-
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
from transformers import BlipProcessor, BlipForQuestionAnswering
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load processor and small BLIP VQA model
|
| 7 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 8 |
+
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
|
| 9 |
|
| 10 |
+
# Use CPU explicitly
|
| 11 |
+
device = torch.device("cpu")
|
| 12 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# VQA function
|
| 15 |
+
def answer_question(image: Image.Image, question: str) -> str:
|
| 16 |
+
# Prepare input
|
| 17 |
+
inputs = processor(image.convert("RGB"), question, return_tensors="pt").to(device)
|
|
|
|
| 18 |
|
| 19 |
+
# Generate answer
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
output = model.generate(**inputs)
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Decode answer
|
| 24 |
+
return processor.decode(output[0], skip_special_tokens=True).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Gradio interface
|
| 27 |
+
demo = gr.Interface(
|
| 28 |
+
fn=answer_question,
|
| 29 |
+
inputs=[
|
| 30 |
+
gr.Image(type="pil", label="Upload an Image"),
|
| 31 |
+
gr.Textbox(label="Ask a Question About the Image")
|
| 32 |
+
],
|
| 33 |
+
outputs=gr.Textbox(label="Answer"),
|
| 34 |
+
title="BLIP Visual Question Answering (CPU Friendly)",
|
| 35 |
+
description="Ask a question about an image using Salesforce's BLIP VQA Base model."
|
| 36 |
+
)
|
| 37 |
|
| 38 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 39 |
demo.launch()
|
|
|
|
|
|