Spaces:
Sleeping
Sleeping
File size: 4,707 Bytes
8e315dc c4587cb 8e315dc c4587cb e3e8ff9 c4587cb 8e315dc 7877a46 c4587cb 7877a46 c4587cb 8e315dc 982b8ff 7877a46 b30668d 7877a46 e3e8ff9 7877a46 01ec88d b30668d 01ec88d b30668d 01ec88d 7877a46 b30668d 01ec88d b30668d 8e315dc b30668d 9e67cb5 8e315dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import streamlit as st
from groq import Groq
# Groq API Key (replace with your actual API key)
groq_api_key = "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"
# Initialize Groq client
client = Groq(api_key=groq_api_key)
# Function to fetch personalized advice using Groq API
def get_personalized_advice(user_data):
"""Fetch personalized advice using the Groq API based on user data."""
query = f"Based on the user's data: anxiety level: {user_data['anxiety_level']}, self esteem: {user_data['self_esteem']}, mental health history: {user_data['mental_health_history']}, stress level: {user_data['stress_level']}, provide personalized mental health advice."
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": query}],
model="llama-3.3-70b-versatile",
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error fetching advice from Groq: {str(e)}")
return None
def stress_level_to_string(stress_level):
"""Convert numerical stress level (0, 1, 2) to a string representation."""
if stress_level == 0:
return "Low"
elif stress_level == 1:
return "Moderate"
else:
return "High"
# Chatbot interface for conversation-like experience
def chatbot_interface():
st.title("π Student Well-being Chatbot")
st.write("Hello! Iβm here to assist you with well-being advice based on your responses.")
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = [
{"role": "bot", "content": "Hi there! I'm here to help with your well-being. Let's start! π"}
]
def next_step(user_input=None):
# Save the user's message to the chat history
if user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
# Proceed to next step in the conversation
if len(st.session_state.messages) == 1:
st.session_state.messages.append({"role": "bot", "content": "On a scale of 1 to 10, how would you rate your anxiety level?"})
elif len(st.session_state.messages) == 2:
anxiety_level = int(user_input)
st.session_state.user_data = {'anxiety_level': anxiety_level}
st.session_state.messages.append({"role": "bot", "content": f"Got it! Your anxiety level is {anxiety_level}. Now, on a scale of 1 to 10, how would you rate your self-esteem?"})
elif len(st.session_state.messages) == 3:
self_esteem = int(user_input)
st.session_state.user_data['self_esteem'] = self_esteem
st.session_state.messages.append({"role": "bot", "content": f"Got it! Your self-esteem level is {self_esteem}. How would you describe your mental health history?"})
elif len(st.session_state.messages) == 4:
st.session_state.user_data['mental_health_history'] = user_input
st.session_state.messages.append({"role": "bot", "content": "Thanks! Now, on a scale of 0 to 2, how would you rate your stress level?"})
elif len(st.session_state.messages) == 5:
stress_level = int(user_input)
st.session_state.user_data['stress_level'] = stress_level
st.session_state.messages.append({"role": "bot", "content": "Thank you for providing the information! Let me get your personalized advice..."})
# Get the advice from Groq API
advice = get_personalized_advice(st.session_state.user_data)
st.session_state.messages.append({"role": "bot", "content": advice or "I couldn't retrieve specific advice right now, but please check back later."})
elif len(st.session_state.messages) == 6:
st.session_state.messages.append({"role": "bot", "content": "Would you like to start over?"})
# Display conversation history
for message in st.session_state.messages:
if message['role'] == 'bot':
st.markdown(f"**Bot**: {message['content']}")
else:
st.markdown(f"**You**: {message['content']}")
# User input field for chat interaction
user_input = st.text_input("Your message:", "")
if user_input:
next_step(user_input)
# Option to restart the conversation
if len(st.session_state.messages) >= 6:
restart_button = st.button("Start Over")
if restart_button:
st.session_state.messages = [{"role": "bot", "content": "Hi there! I'm here to help with your well-being. Let's start! π"}]
# Main function to run the chatbot
def main():
chatbot_interface()
if __name__ == "__main__":
main()
|