Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
import gradio as gr | |
from text_extractor import extract_text_from_file | |
from embedder import get_embeddings | |
from vector_store import create_faiss_index, search_similar_cvs | |
from groq_api import summarize_match | |
# Global storage | |
cv_texts = [] | |
cv_names = [] | |
cv_vectors = [] | |
faiss_index = None | |
def upload_cvs(files): | |
global cv_texts, cv_names, cv_vectors, faiss_index | |
try: | |
cv_texts = [extract_text_from_file(f.name) for f in files] | |
cv_names = [f.name for f in files] | |
cv_vectors = get_embeddings(cv_texts) | |
import numpy as np | |
if cv_vectors is None or np.array(cv_vectors).size == 0: | |
return "β No valid CVs extracted or embedded." | |
faiss_index = create_faiss_index(cv_vectors) | |
return f"β Uploaded and indexed {len(files)} CVs." | |
except Exception as e: | |
return f"β Error during upload: {e}" | |
def match_jd(jd_text): | |
global faiss_index | |
try: | |
if not faiss_index: | |
return "β Please upload CVs first." | |
if not jd_text.strip(): | |
return "β Job description is empty." | |
jd_vector = get_embeddings([jd_text])[0] | |
top_k_indices = search_similar_cvs(jd_vector, faiss_index, k=3) | |
import os | |
matched_names = [os.path.basename(cv_names[i]) for i in top_k_indices] | |
matched_texts = [ | |
cv_texts[i][:500] if cv_texts[i].strip() else "[No CV content]" | |
for i in top_k_indices | |
] | |
summary = summarize_match(jd_text, matched_names, matched_texts) | |
return f"β Top Matches:\n{matched_names}\n\nπ Summary:\n{summary}" | |
except Exception as e: | |
return f"β Error during matching: {e}" | |
def clear_data(): | |
global cv_texts, cv_names, cv_vectors, faiss_index | |
cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None | |
return "π§Ή Data cleared." | |
# Gradio Interfaces | |
iface = gr.Interface( | |
fn=match_jd, | |
inputs=[gr.Textbox(lines=10, label="Paste Job Description")], | |
outputs="text", | |
title="CV Matcher with Groq", | |
description="Upload CVs, enter a Job Description, and get top matches and summary." | |
) | |
upload = gr.Interface( | |
fn=upload_cvs, | |
inputs=gr.File(file_types=[".pdf", ".docx"], file_count="multiple"), | |
outputs="text", | |
title="Upload CVs" | |
) | |
clear = gr.Interface(fn=clear_data, inputs=[], outputs="text", title="Reset Data") | |
app = gr.TabbedInterface([upload, iface, clear], ["Upload CVs", "Match JD", "Clear Data"]) | |
if __name__ == "__main__": | |
app.launch() | |