saif12165's picture
fix code5t error
a7c0f75 verified
# app.py - CodeLab Stage 3: Semantic Analysis - Fixed Version
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration
import json
import re
import ast
import time
from typing import Dict, List, Any, Optional
import logging
import traceback
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SemanticAnalyzer:
def __init__(self):
logger.info("πŸš€ Initializing CodeLab Semantic Analyzer...")
self.models_loaded = False
# Initialize models with error handling
try:
# CodeBERT for semantic understanding
logger.info("πŸ“– Loading CodeBERT...")
self.codebert_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
self.codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
# CodeT5 for code analysis and generation
logger.info("πŸ”§ Loading CodeT5...")
self.codet5_tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base") # βœ…
self.codet5_model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base")
# Set models to eval mode for inference
self.codebert_model.eval()
self.codet5_model.eval()
self.models_loaded = True
logger.info("βœ… All models loaded successfully!")
except Exception as e:
logger.error(f"❌ Error loading models: {str(e)}")
self.models_loaded = False
# Don't raise - allow fallback functionality
def generate_code_embedding(self, code: str) -> List[float]:
"""Generate semantic embedding using CodeBERT"""
if not self.models_loaded:
logger.warning("⚠️ Models not loaded, returning zero embedding")
return [0.0] * 768
try:
# Clean and prepare code
cleaned_code = self._clean_code_for_analysis(code)
# Tokenize code
inputs = self.codebert_tokenizer(
cleaned_code,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
# Generate embedding
with torch.no_grad():
outputs = self.codebert_model(**inputs)
# Use [CLS] token embedding (better for semantic representation)
embedding = outputs.last_hidden_state[:, 0, :].squeeze()
# Normalize embedding
embedding_norm = torch.nn.functional.normalize(embedding, dim=0)
return embedding_norm.tolist()
except Exception as e:
logger.error(f"❌ Error generating embedding: {str(e)}")
return [0.0] * 768 # Return zero vector on error
def analyze_with_codet5(self, code: str, question_text: str) -> Dict[str, Any]:
"""Enhanced code analysis using CodeT5"""
if not self.models_loaded:
return self._fallback_analysis(code)
try:
results = {}
# Task 1: Code summarization with better prompt
summarize_input = f"Summarize the following Python function: {code}"
inputs = self.codet5_tokenizer(
summarize_input,
return_tensors="pt",
max_length=512,
truncation=True
)
with torch.no_grad():
summary_ids = self.codet5_model.generate(
inputs.input_ids,
max_length=100,
num_beams=3, # Increased for better quality
early_stopping=True,
do_sample=False, # Deterministic for consistency
pad_token_id=self.codet5_tokenizer.pad_token_id
)
results['code_summary'] = self.codet5_tokenizer.decode(
summary_ids[0],
skip_special_tokens=True
)
# Task 2: Enhanced pattern extraction
results['logic_patterns'] = self.extract_logic_patterns_enhanced(code)
results['approach_analysis'] = self.analyze_approach_enhanced(code)
results['complexity_analysis'] = self.analyze_complexity_enhanced(code)
results['semantic_quality'] = self.assess_semantic_quality(code)
return results
except Exception as e:
logger.error(f"❌ Error in CodeT5 analysis: {str(e)}")
return self._fallback_analysis(code)
def _fallback_analysis(self, code: str) -> Dict[str, Any]:
"""Fallback analysis when AI models fail"""
lines_count = len(code.split('\n'))
return {
'code_summary': f'Python function with {lines_count} lines',
'logic_patterns': self.extract_logic_patterns_enhanced(code),
'approach_analysis': self.analyze_approach_enhanced(code),
'complexity_analysis': self.analyze_complexity_enhanced(code),
'semantic_quality': self.assess_semantic_quality(code)
}
def extract_logic_patterns_enhanced(self, code: str) -> List[str]:
"""Enhanced logical pattern extraction"""
patterns = []
code_lower = code.lower()
# Basic patterns
if 'max(' in code: patterns.append('builtin_max')
if 'min(' in code: patterns.append('builtin_min')
if 'sum(' in code: patterns.append('builtin_sum')
if 'len(' in code: patterns.append('length_operations')
if 'sorted(' in code: patterns.append('sorting_operations')
# Control flow patterns
if 'for' in code and 'if' in code: patterns.append('iterative_conditional')
if 'while' in code: patterns.append('loop_based')
if 'def' in code: patterns.append('function_definition')
if 'return' in code: patterns.append('return_statement')
# Advanced patterns with regex
if re.search(r'for\s+\w+\s+in\s+range', code): patterns.append('indexed_iteration')
if re.search(r'for\s+\w+\s+in\s+enumerate', code): patterns.append('indexed_enumeration')
if re.search(r'if\s+.*[<>]=?.*:', code): patterns.append('comparison_logic')
if re.search(r'\[.*\]', code): patterns.append('list_operations')
# Error handling patterns
if 'try:' in code or 'except' in code: patterns.append('error_handling')
if 'if not' in code or 'if len(' in code: patterns.append('input_validation')
# Mathematical patterns
if any(op in code for op in ['**', 'pow(', 'sqrt', 'math.']): patterns.append('mathematical_operations')
return list(set(patterns)) # Remove duplicates
def analyze_approach_enhanced(self, code: str) -> str:
"""Enhanced algorithmic approach analysis"""
# Built-in function approaches (optimal)
if 'max(' in code and 'min(' not in code:
return 'builtin_maximum_approach'
elif 'min(' in code and 'max(' not in code:
return 'builtin_minimum_approach'
elif 'max(' in code and 'min(' in code:
return 'dual_builtin_approach'
elif 'sum(' in code:
return 'builtin_aggregation_approach'
elif 'sorted(' in code:
return 'sorting_based_approach'
# Loop-based approaches
elif 'for' in code and 'if' in code and 'range' in code:
return 'indexed_iterative_approach'
elif 'for' in code and 'if' in code:
return 'iterative_comparison_approach'
elif 'while' in code:
return 'loop_based_approach'
# Advanced approaches
elif 'enumerate' in code:
return 'enumerated_iteration_approach'
elif re.search(r'def\s+\w+.*def\s+\w+', code):
return 'nested_function_approach'
else:
return 'custom_logic_approach'
def analyze_complexity_enhanced(self, code: str) -> Dict[str, str]:
"""Enhanced complexity analysis"""
def estimate_time_complexity(code):
nested_loops = len(re.findall(r'for.*for|while.*for|for.*while', code))
single_loops = code.count('for') + code.count('while') - (nested_loops * 2)
if 'max(' in code or 'min(' in code or 'sum(' in code:
return 'O(n)'
elif 'sorted(' in code:
return 'O(n log n)'
elif nested_loops >= 1:
return 'O(nΒ²)' if nested_loops == 1 else 'O(nΒ³)'
elif single_loops >= 1:
return 'O(n)'
else:
return 'O(1)'
def estimate_space_complexity(code):
if 'sorted(' in code or re.search(r'\[.*for.*\]', code):
return 'O(n)'
elif '[' in code and ']' in code:
return 'O(n)'
else:
return 'O(1)'
return {
'time': estimate_time_complexity(code),
'space': estimate_space_complexity(code)
}
def assess_semantic_quality(self, code: str) -> Dict[str, Any]:
"""Assess the semantic quality of code"""
quality_metrics = {
'readability_score': 0,
'logic_clarity': 'unclear',
'efficiency_level': 'low',
'best_practices': []
}
# Readability assessment
lines = code.split('\n')
total_score = 10
# Check for comments or docstrings
if '"""' in code or "'''" in code or '#' in code:
quality_metrics['best_practices'].append('documented_code')
total_score += 1
# Check for meaningful variable names
if re.search(r'\b(max_val|min_val|result|answer|total)\b', code):
quality_metrics['best_practices'].append('meaningful_variables')
total_score += 1
# Check for input validation
if 'if not' in code or 'if len(' in code:
quality_metrics['best_practices'].append('input_validation')
total_score += 1
# Efficiency assessment
if any(builtin in code for builtin in ['max(', 'min(', 'sum(']):
quality_metrics['efficiency_level'] = 'high'
quality_metrics['best_practices'].append('builtin_functions')
elif 'for' in code and 'if' in code:
quality_metrics['efficiency_level'] = 'medium'
# Logic clarity
if len(lines) <= 10 and 'def' in code and 'return' in code:
quality_metrics['logic_clarity'] = 'clear'
elif len(lines) <= 20:
quality_metrics['logic_clarity'] = 'moderate'
quality_metrics['readability_score'] = min(10, max(1, total_score))
return quality_metrics
def generate_optimal_solution(self, question_text: str, question_type: str = "auto_detect") -> Dict[str, Any]:
"""Enhanced optimal solution generation"""
try:
question_lower = question_text.lower()
# Pattern-based solution generation (more reliable than AI generation)
if 'max' in question_lower and 'min' not in question_lower:
return {
'code': 'def find_max(numbers):\n """Find maximum value in a list"""\n if not numbers:\n return None\n return max(numbers)',
'explanation': 'Optimal solution using built-in max() function with input validation',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
elif 'min' in question_lower and 'max' not in question_lower:
return {
'code': 'def find_min(numbers):\n """Find minimum value in a list"""\n if not numbers:\n return None\n return min(numbers)',
'explanation': 'Optimal solution using built-in min() function with input validation',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
elif 'sum' in question_lower or 'total' in question_lower:
return {
'code': 'def calculate_sum(numbers):\n """Calculate sum of numbers in a list"""\n return sum(numbers)',
'explanation': 'Optimal solution using built-in sum() function',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
else:
# Try AI generation as fallback
if self.models_loaded:
return self._ai_generate_solution(question_text)
else:
return self._template_solution(question_text)
except Exception as e:
logger.error(f"❌ Error generating optimal solution: {str(e)}")
return self._template_solution(question_text)
def _ai_generate_solution(self, question_text: str) -> Dict[str, Any]:
"""AI-based solution generation using CodeT5"""
try:
generate_input = f"Generate optimal Python function for: {question_text}"
inputs = self.codet5_tokenizer(
generate_input,
return_tensors="pt",
max_length=256,
truncation=True
)
with torch.no_grad():
generated_ids = self.codet5_model.generate(
inputs.input_ids,
max_length=200,
num_beams=3,
early_stopping=True,
do_sample=False, # Deterministic
pad_token_id=self.codet5_tokenizer.pad_token_id
)
generated_code = self.codet5_tokenizer.decode(
generated_ids[0],
skip_special_tokens=True
)
return {
'code': generated_code,
'explanation': 'AI-generated solution using CodeT5',
'approach': 'ai_generated',
'complexity': 'O(n)',
'generated_by': 'codet5',
'quality_score': 7
}
except Exception as e:
logger.error(f"❌ Error in AI generation: {str(e)}")
return self._template_solution(question_text)
def _template_solution(self, question_text: str) -> Dict[str, Any]:
"""Template-based fallback solution"""
return {
'code': 'def solution(data):\n """Template solution"""\n # Implementation needed\n return data[0] if data else None',
'explanation': 'Template solution - implementation needed based on specific requirements',
'approach': 'template_fallback',
'complexity': 'O(1)',
'generated_by': 'template',
'quality_score': 5
}
def compare_solutions(self, student_code: str, optimal_code: str) -> Dict[str, Any]:
"""Enhanced solution comparison"""
try:
# Generate embeddings for semantic comparison
student_embedding = self.generate_code_embedding(student_code)
optimal_embedding = self.generate_code_embedding(optimal_code)
# Calculate semantic similarity
similarity = self.calculate_cosine_similarity(student_embedding, optimal_embedding)
# Pattern analysis
student_patterns = self.extract_logic_patterns_enhanced(student_code)
optimal_patterns = self.extract_logic_patterns_enhanced(optimal_code)
# Approach comparison
student_approach = self.analyze_approach_enhanced(student_code)
optimal_approach = self.analyze_approach_enhanced(optimal_code)
# Quality comparison
student_quality = self.assess_semantic_quality(student_code)
optimal_quality = self.assess_semantic_quality(optimal_code)
return {
'semantic_similarity': float(similarity),
'student_patterns': student_patterns,
'optimal_patterns': optimal_patterns,
'pattern_overlap': len(set(student_patterns) & set(optimal_patterns)),
'approach_comparison': {
'student': student_approach,
'optimal': optimal_approach,
'matches': student_approach == optimal_approach
},
'quality_comparison': {
'student_readability': student_quality['readability_score'],
'optimal_readability': optimal_quality['readability_score'],
'student_efficiency': student_quality['efficiency_level'],
'optimal_efficiency': optimal_quality['efficiency_level']
},
'complexity_comparison': self.compare_complexity_enhanced(student_code, optimal_code)
}
except Exception as e:
logger.error(f"❌ Error comparing solutions: {str(e)}")
return {
'semantic_similarity': 0.0,
'student_patterns': [],
'optimal_patterns': [],
'pattern_overlap': 0,
'approach_comparison': {'error': str(e)},
'quality_comparison': {'error': str(e)},
'complexity_comparison': 'unable_to_compare'
}
def calculate_cosine_similarity(self, vec1: List[float], vec2: List[float]) -> float:
"""Enhanced cosine similarity calculation"""
try:
if len(vec1) != len(vec2) or not vec1 or not vec2:
return 0.0
# Convert to tensors for more accurate calculation
vec1_tensor = torch.tensor(vec1)
vec2_tensor = torch.tensor(vec2)
# Calculate cosine similarity
similarity = torch.nn.functional.cosine_similarity(
vec1_tensor.unsqueeze(0),
vec2_tensor.unsqueeze(0)
)
return float(similarity.item())
except Exception as e:
logger.error(f"❌ Error calculating similarity: {str(e)}")
return 0.0
def compare_complexity_enhanced(self, code1: str, code2: str) -> Dict[str, Any]:
"""Enhanced complexity comparison"""
complexity1 = self.analyze_complexity_enhanced(code1)
complexity2 = self.analyze_complexity_enhanced(code2)
# Complexity ranking for comparison
complexity_rank = {
'O(1)': 1, 'O(log n)': 2, 'O(n)': 3,
'O(n log n)': 4, 'O(nΒ²)': 5, 'O(nΒ³)': 6
}
rank1 = complexity_rank.get(complexity1['time'], 999)
rank2 = complexity_rank.get(complexity2['time'], 999)
return {
'student_complexity': complexity1,
'optimal_complexity': complexity2,
'efficiency_comparison': 'better' if rank1 < rank2 else 'worse' if rank1 > rank2 else 'same',
'recommendation': self._get_complexity_recommendation(complexity1, complexity2)
}
def _get_complexity_recommendation(self, student_comp: Dict, optimal_comp: Dict) -> str:
"""Generate complexity-based recommendations"""
if student_comp['time'] == optimal_comp['time']:
return "Excellent! Your solution has optimal time complexity"
elif student_comp['time'] in ['O(nΒ²)', 'O(nΒ³)'] and optimal_comp['time'] == 'O(n)':
return "Consider using built-in functions to improve from quadratic to linear complexity"
elif student_comp['time'] == 'O(n)' and optimal_comp['time'] == 'O(1)':
return "Good approach, but there might be a constant-time solution"
else:
return "Your complexity is acceptable, but optimization is possible"
def _clean_code_for_analysis(self, code: str) -> str:
"""Clean code for better analysis"""
# Remove excessive whitespace
lines = [line.strip() for line in code.split('\n') if line.strip()]
return '\n'.join(lines)
# Initialize the analyzer (with lazy loading)
analyzer = None
def get_analyzer():
"""Get analyzer instance with lazy initialization"""
global analyzer
if analyzer is None:
analyzer = SemanticAnalyzer()
return analyzer
def process_semantic_analysis(
student_code: str,
question_text: str,
question_id: str = "default",
need_optimal_solution: bool = True
) -> str:
"""Enhanced main function for semantic analysis"""
start_time = time.time()
try:
logger.info(f"🧠 Starting enhanced semantic analysis for question: {question_id}")
# Get analyzer instance
semantic_analyzer = get_analyzer()
# Input validation
if not student_code or not student_code.strip():
return json.dumps({
'success': False,
'error': 'Empty code provided',
'processing_time_ms': int((time.time() - start_time) * 1000)
})
# Step 1: Generate code embedding
logger.info("πŸ“Š Generating code embedding...")
code_embedding = semantic_analyzer.generate_code_embedding(student_code)
# Step 2: Enhanced analysis with CodeT5
logger.info("πŸ” Performing enhanced analysis...")
codet5_analysis = semantic_analyzer.analyze_with_codet5(student_code, question_text)
# Step 3: Generate optimal solution if needed
optimal_solution = None
if need_optimal_solution:
logger.info("πŸ’‘ Generating optimal solution...")
optimal_solution = semantic_analyzer.generate_optimal_solution(question_text)
# Step 4: Enhanced solution comparison
comparison = None
if optimal_solution:
logger.info("βš–οΈ Performing enhanced comparison...")
comparison = semantic_analyzer.compare_solutions(student_code, optimal_solution['code'])
# Step 5: Generate comprehensive insights
insights = generate_comprehensive_insights(
student_code,
codet5_analysis,
comparison,
optimal_solution
)
processing_time = time.time() - start_time
# Prepare enhanced results
results = {
'success': True,
'processing_time_ms': int(processing_time * 1000),
'semantic_analysis': {
'code_embedding': code_embedding[:100], # More dimensions for better representation
'embedding_size': len(code_embedding),
'logic_patterns': codet5_analysis['logic_patterns'],
'approach_analysis': codet5_analysis['approach_analysis'],
'complexity_analysis': codet5_analysis['complexity_analysis'],
'semantic_quality': codet5_analysis['semantic_quality'],
'code_summary': codet5_analysis['code_summary']
},
'optimal_solution': optimal_solution,
'solution_comparison': comparison,
'semantic_insights': insights,
'recommendations': generate_recommendations(codet5_analysis, comparison),
'metadata': {
'question_id': question_id,
'analysis_version': '3.1-enhanced-ai',
'models_used': ['CodeBERT', 'CodeT5'] if semantic_analyzer.models_loaded else ['Fallback'],
'models_status': 'loaded' if semantic_analyzer.models_loaded else 'fallback',
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
'processing_stage': 'semantic_analysis'
}
}
logger.info(f"βœ… Enhanced semantic analysis completed in {processing_time:.2f}s")
return json.dumps(results, indent=2)
except Exception as e:
logger.error(f"❌ Error in semantic analysis: {str(e)}")
logger.error(traceback.format_exc())
return json.dumps({
'success': False,
'error': str(e),
'processing_time_ms': int((time.time() - start_time) * 1000),
'fallback_analysis': 'Enhanced analysis unavailable due to error',
'metadata': {
'analysis_version': '3.1-enhanced-ai',
'error_occurred': True,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
})
def generate_comprehensive_insights(
student_code: str,
codet5_analysis: Dict,
comparison: Optional[Dict] = None,
optimal_solution: Optional[Dict] = None
) -> List[str]:
"""Generate comprehensive insights about the student's code"""
insights = []
# Logic understanding insights
patterns = codet5_analysis['logic_patterns']
if 'builtin_max' in patterns or 'builtin_min' in patterns or 'builtin_sum' in patterns:
insights.append("Excellent! Student demonstrates advanced understanding by using Python built-in functions")
elif 'iterative_conditional' in patterns:
insights.append("Good logical thinking demonstrated with iterative comparison approach")
elif 'function_definition' in patterns and 'return_statement' in patterns:
insights.append("Proper function structure with clear return logic")
# Approach analysis insights
approach = codet5_analysis['approach_analysis']
if 'builtin' in approach:
insights.append("Optimal algorithmic approach chosen - highly efficient solution")
elif 'iterative' in approach:
insights.append("Solid iterative approach, shows good programming fundamentals")
elif 'custom' in approach:
insights.append("Creative custom approach, demonstrates independent problem-solving")
# Complexity insights
complexity = codet5_analysis['complexity_analysis']
if complexity['time'] == 'O(n)' and complexity['space'] == 'O(1)':
insights.append("Excellent time and space complexity - very efficient solution")
elif complexity['time'] in ['O(nΒ²)', 'O(nΒ³)']:
insights.append("Solution works correctly but could benefit from complexity optimization")
# Quality insights
quality = codet5_analysis['semantic_quality']
if quality['readability_score'] >= 8:
insights.append("Code is highly readable with good programming practices")
elif quality['efficiency_level'] == 'high':
insights.append("Solution demonstrates awareness of efficient programming techniques")
# Comparison insights
if comparison:
similarity = comparison['semantic_similarity']
if similarity > 0.8:
insights.append("Student's solution is semantically very similar to the optimal approach")
elif similarity > 0.6:
insights.append("Good understanding shown, with opportunities for further optimization")
elif similarity > 0.4:
insights.append("Correct approach with different implementation style")
# Pattern overlap insights
overlap = comparison['pattern_overlap']
total_patterns = len(comparison['optimal_patterns'])
if total_patterns > 0 and overlap / total_patterns > 0.7:
insights.append("Strong pattern recognition - matches most optimal solution patterns")
# Default insight if none found
if not insights:
insights.append("Student shows basic understanding of the problem and provides a working solution")
return insights
def generate_recommendations(codet5_analysis: Dict, comparison: Optional[Dict] = None) -> List[str]:
"""Generate actionable recommendations for improvement"""
recommendations = []
# Efficiency recommendations
patterns = codet5_analysis['logic_patterns']
if 'iterative_conditional' in patterns and 'builtin_max' not in patterns:
recommendations.append("Consider using built-in max() or min() functions for better efficiency")
# Complexity recommendations
complexity = codet5_analysis['complexity_analysis']
if complexity['time'] in ['O(nΒ²)', 'O(nΒ³)']:
recommendations.append("Try to reduce algorithmic complexity using more efficient approaches")
# Quality recommendations
quality = codet5_analysis['semantic_quality']
if quality['readability_score'] < 7:
recommendations.append("Add comments or use more descriptive variable names for better readability")
if 'input_validation' not in quality['best_practices']:
recommendations.append("Consider adding input validation for more robust code")
# Comparison-based recommendations
if comparison and comparison['semantic_similarity'] < 0.6:
recommendations.append("Review the optimal solution to learn alternative approaches")
return recommendations
# Enhanced Gradio Interface
def gradio_interface(student_code, question_text, need_optimal):
"""Enhanced Gradio interface wrapper"""
if not student_code.strip():
return json.dumps({
'error': 'Please provide student code for analysis',
'success': False
}, indent=2)
return process_semantic_analysis(
student_code=student_code,
question_text=question_text,
question_id="gradio_test",
need_optimal_solution=need_optimal
)
# Create enhanced Gradio interface
demo = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Student Code",
placeholder="Enter Python code here...",
lines=12,
value="def find_max(numbers):\n max_val = numbers[0]\n for num in numbers:\n if num > max_val:\n max_val = num\n return max_val"
),
gr.Textbox(
label="Question Text",
placeholder="Enter the question...",
lines=2,
value="Find the maximum number in a list"
),
gr.Checkbox(
label="Generate Optimal Solution",
value=True
)
],
outputs=gr.Textbox(
label="Semantic Analysis Results (JSON)",
lines=25,
show_copy_button=True
),
title="🧠 CodeLab Semantic Analysis - Stage 3 (Fixed)",
description="""
Advanced semantic analysis using CodeBERT and CodeT5 models for educational code evaluation.
This system analyzes code semantics, generates optimal solutions, and provides educational insights.
""",
examples=[
[
"def find_max(numbers):\n return max(numbers)",
"Find the maximum number in a list",
True
],
[
"def find_min(arr):\n minimum = arr[0]\n for i in range(1, len(arr)):\n if arr[i] < minimum:\n minimum = arr[i]\n return minimum",
"Find the minimum number in an array",
True
],
[
"def calculate_sum(nums):\n total = 0\n for num in nums:\n total += num\n return total",
"Calculate the sum of all numbers in a list",
True
]
],
theme=gr.themes.Soft(),
analytics_enabled=False
)
# Launch the interface
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
)