Spaces:
Running
Running
File size: 52,617 Bytes
6e9b5dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 |
"""
File: CodonPrediction.py
---------------------------
Includes functions to tokenize input, load models, infer predicted dna sequences and
helper functions related to processing data for passing to the model.
"""
import warnings
from typing import Any, Dict, List, Optional, Tuple, Union
import heapq
from dataclasses import dataclass
import numpy as np
import onnxruntime as rt
import torch
import transformers
from transformers import (
AutoTokenizer,
BatchEncoding,
BigBirdConfig,
BigBirdForMaskedLM,
PreTrainedTokenizerFast,
)
from CodonTransformer.CodonData import get_merged_seq
from CodonTransformer.CodonUtils import (
AMINO_ACID_TO_INDEX,
INDEX2TOKEN,
NUM_ORGANISMS,
ORGANISM2ID,
TOKEN2INDEX,
DNASequencePrediction,
GC_COUNTS_PER_TOKEN,
CODON_GC_CONTENT,
AA_MIN_GC,
AA_MAX_GC,
)
def predict_dna_sequence(
protein: str,
organism: Union[int, str],
device: torch.device,
tokenizer: Union[str, PreTrainedTokenizerFast] = None,
model: Union[str, torch.nn.Module] = None,
attention_type: str = "original_full",
deterministic: bool = True,
temperature: float = 0.2,
top_p: float = 0.95,
num_sequences: int = 1,
match_protein: bool = False,
use_constrained_search: bool = False,
gc_bounds: Tuple[float, float] = (0.30, 0.70),
beam_size: int = 5,
length_penalty: float = 1.0,
diversity_penalty: float = 0.0,
) -> Union[DNASequencePrediction, List[DNASequencePrediction]]:
"""
Predict the DNA sequence(s) for a given protein using the CodonTransformer model.
This function takes a protein sequence and an organism (as ID or name) as input
and returns the predicted DNA sequence(s) using the CodonTransformer model. It can use
either provided tokenizer and model objects or load them from specified paths.
Args:
protein (str): The input protein sequence for which to predict the DNA sequence.
organism (Union[int, str]): Either the ID of the organism or its name (e.g.,
"Escherichia coli general"). If a string is provided, it will be converted
to the corresponding ID using ORGANISM2ID.
device (torch.device): The device (CPU or GPU) to run the model on.
tokenizer (Union[str, PreTrainedTokenizerFast, None], optional): Either a file
path to load the tokenizer from, a pre-loaded tokenizer object, or None. If
None, it will be loaded from HuggingFace. Defaults to None.
model (Union[str, torch.nn.Module, None], optional): Either a file path to load
the model from, a pre-loaded model object, or None. If None, it will be
loaded from HuggingFace. Defaults to None.
attention_type (str, optional): The type of attention mechanism to use in the
model. Can be either 'block_sparse' or 'original_full'. Defaults to
"original_full".
deterministic (bool, optional): Whether to use deterministic decoding (most
likely tokens). If False, samples tokens according to their probabilities
adjusted by the temperature. Defaults to True.
temperature (float, optional): A value controlling the randomness of predictions
during non-deterministic decoding. Lower values (e.g., 0.2) make the model
more conservative, while higher values (e.g., 0.8) increase randomness.
Using high temperatures may result in prediction of DNA sequences that
do not translate to the input protein.
Recommended values are:
- Low randomness: 0.2
- Medium randomness: 0.5
- High randomness: 0.8
The temperature must be a positive float. Defaults to 0.2.
top_p (float, optional): The cumulative probability threshold for nucleus sampling.
Tokens with cumulative probability up to top_p are considered for sampling.
This parameter helps balance diversity and coherence in the predicted DNA sequences.
The value must be a float between 0 and 1. Defaults to 0.95.
num_sequences (int, optional): The number of DNA sequences to generate. Only applicable
when deterministic is False. Defaults to 1.
match_protein (bool, optional): Ensures the predicted DNA sequence is translated
to the input protein sequence by sampling from only the respective codons of
given amino acids. Defaults to False.
use_constrained_search (bool, optional): Whether to use constrained beam search
with GC content bounds. Defaults to False.
gc_bounds (Tuple[float, float], optional): GC content bounds (min, max) for
constrained search. Defaults to (0.30, 0.70).
beam_size (int, optional): Beam size for constrained search. Defaults to 5.
length_penalty (float, optional): Length penalty for beam search scoring.
Defaults to 1.0.
diversity_penalty (float, optional): Diversity penalty to reduce repetitive
sequences. Defaults to 0.0.
Returns:
Union[DNASequencePrediction, List[DNASequencePrediction]]: An object or list of objects
containing the prediction results:
- organism (str): Name of the organism used for prediction.
- protein (str): Input protein sequence for which DNA sequence is predicted.
- processed_input (str): Processed input sequence (merged protein and DNA).
- predicted_dna (str): Predicted DNA sequence.
Raises:
ValueError: If the protein sequence is empty, if the organism is invalid,
if the temperature is not a positive float, if top_p is not between 0 and 1,
or if num_sequences is less than 1 or used with deterministic mode.
Note:
This function uses ORGANISM2ID, INDEX2TOKEN, and AMINO_ACID_TO_INDEX dictionaries
imported from CodonTransformer.CodonUtils. ORGANISM2ID maps organism names to their
corresponding IDs. INDEX2TOKEN maps model output indices (token IDs) to
respective codons. AMINO_ACID_TO_INDEX maps each amino acid and stop symbol to indices
of codon tokens that translate to it.
Example:
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
>>> from CodonTransformer.CodonPrediction import predict_dna_sequence
>>> from CodonTransformer.CodonJupyter import format_model_output
>>>
>>> # Set up device
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>>
>>> # Load tokenizer and model
>>> tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
>>> model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
>>> model = model.to(device)
>>>
>>> # Define protein sequence and organism
>>> protein = "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"
>>> organism = "Escherichia coli general"
>>>
>>> # Predict DNA sequence with deterministic decoding (single sequence)
>>> output = predict_dna_sequence(
... protein=protein,
... organism=organism,
... device=device,
... tokenizer=tokenizer,
... model=model,
... attention_type="original_full",
... deterministic=True
... )
>>>
>>> # Predict DNA sequence with constrained beam search
>>> output_constrained = predict_dna_sequence(
... protein=protein,
... organism=organism,
... device=device,
... tokenizer=tokenizer,
... model=model,
... use_constrained_search=True,
... gc_bounds=(0.40, 0.60),
... beam_size=10,
... length_penalty=1.2,
... diversity_penalty=0.1
... )
>>>
>>> # Predict multiple DNA sequences with low randomness and top_p sampling
>>> output_random = predict_dna_sequence(
... protein=protein,
... organism=organism,
... device=device,
... tokenizer=tokenizer,
... model=model,
... attention_type="original_full",
... deterministic=False,
... temperature=0.2,
... top_p=0.95,
... num_sequences=3
... )
>>>
>>> print(format_model_output(output))
>>> for i, seq in enumerate(output_random, 1):
... print(f"Sequence {i}:")
... print(format_model_output(seq))
... print()
"""
if not protein:
raise ValueError("Protein sequence cannot be empty.")
if not isinstance(temperature, (float, int)) or temperature <= 0:
raise ValueError("Temperature must be a positive float.")
if not isinstance(top_p, (float, int)) or not 0 < top_p <= 1.0:
raise ValueError("top_p must be a float between 0 and 1.")
if not isinstance(num_sequences, int) or num_sequences < 1:
raise ValueError("num_sequences must be a positive integer.")
if use_constrained_search:
if not isinstance(gc_bounds, tuple) or len(gc_bounds) != 2:
raise ValueError("gc_bounds must be a tuple of (min_gc, max_gc).")
if not (0.0 <= gc_bounds[0] <= gc_bounds[1] <= 1.0):
raise ValueError("gc_bounds must be between 0.0 and 1.0 with min <= max.")
if not isinstance(beam_size, int) or beam_size < 1:
raise ValueError("beam_size must be a positive integer.")
if deterministic and num_sequences > 1 and not use_constrained_search:
raise ValueError(
"Multiple sequences can only be generated in non-deterministic mode "
"(unless using constrained search)."
)
if use_constrained_search and num_sequences > 1:
raise ValueError(
"Constrained beam search currently supports only single sequence generation."
)
# Load tokenizer
if not isinstance(tokenizer, PreTrainedTokenizerFast):
tokenizer = load_tokenizer(tokenizer)
# Load model
if not isinstance(model, torch.nn.Module):
model = load_model(model_path=model, device=device, attention_type=attention_type)
else:
model.eval()
model.bert.set_attention_type(attention_type)
model.to(device)
# Validate organism and convert to organism_id and organism_name
organism_id, organism_name = validate_and_convert_organism(organism)
# Inference loop
with torch.no_grad():
# Tokenize the input sequence
merged_seq = get_merged_seq(protein=protein, dna="")
input_dict = {
"idx": 0, # sample index
"codons": merged_seq,
"organism": organism_id,
}
tokenized_input = tokenize([input_dict], tokenizer=tokenizer).to(device)
# Get the model predictions
output_dict = model(**tokenized_input, return_dict=True)
logits = output_dict.logits.detach().cpu()
logits = logits[:, 1:-1, :] # Remove [CLS] and [SEP] tokens
# Mask the logits of codons that do not correspond to the input protein sequence
if match_protein:
possible_tokens_per_position = [
AMINO_ACID_TO_INDEX[token[0]] for token in merged_seq.split(" ")
]
seq_len = logits.shape[1]
if len(possible_tokens_per_position) > seq_len:
possible_tokens_per_position = possible_tokens_per_position[:seq_len]
mask = torch.full_like(logits, float("-inf"))
for pos, possible_tokens in enumerate(possible_tokens_per_position):
mask[:, pos, possible_tokens] = 0
logits = mask + logits
predictions = []
for _ in range(num_sequences):
# Decode the predicted DNA sequence from the model output
if use_constrained_search:
# Use constrained beam search with GC bounds
predicted_indices = constrained_beam_search_simple(
logits=logits.squeeze(0),
protein_sequence=protein,
gc_bounds=gc_bounds,
max_attempts=50,
)
elif deterministic:
predicted_indices = logits.argmax(dim=-1).squeeze().tolist()
else:
predicted_indices = sample_non_deterministic(
logits=logits, temperature=temperature, top_p=top_p
)
predicted_dna = list(map(INDEX2TOKEN.__getitem__, predicted_indices))
predicted_dna = (
"".join([token[-3:] for token in predicted_dna]).strip().upper()
)
predictions.append(
DNASequencePrediction(
organism=organism_name,
protein=protein,
processed_input=merged_seq,
predicted_dna=predicted_dna,
)
)
return predictions[0] if num_sequences == 1 else predictions
@dataclass
class BeamCandidate:
"""Represents a candidate sequence in the beam search."""
tokens: List[int]
score: float
gc_count: int
length: int
def __post_init__(self):
self.gc_ratio = self.gc_count / max(self.length, 1)
def __lt__(self, other):
return self.score < other.score
def _calculate_true_future_gc_range(
current_pos: int,
protein_sequence: str,
current_gc_count: int,
current_length: int
) -> Tuple[float, float]:
"""
Calculate the true minimum and maximum possible final GC content
given current state and remaining amino acids (perfect foresight).
Args:
current_pos: Current position in protein sequence
protein_sequence: Full protein sequence
current_gc_count: Current GC count in partial sequence
current_length: Current length in nucleotides
Returns:
Tuple of (min_possible_final_gc_ratio, max_possible_final_gc_ratio)
"""
if current_pos >= len(protein_sequence):
# Already at end, return current ratio
final_ratio = current_gc_count / max(current_length, 1)
return final_ratio, final_ratio
# Calculate remaining amino acids
remaining_aas = protein_sequence[current_pos:]
# Calculate min/max possible GC from remaining amino acids
min_future_gc = 0
max_future_gc = 0
for aa in remaining_aas:
if aa.upper() in AA_MIN_GC and aa.upper() in AA_MAX_GC:
min_future_gc += AA_MIN_GC[aa.upper()]
max_future_gc += AA_MAX_GC[aa.upper()]
else:
# If amino acid not found, assume moderate GC (1-2 range)
min_future_gc += 1
max_future_gc += 2
# Calculate final sequence length
final_length = current_length + len(remaining_aas) * 3
# Calculate min/max possible final GC ratios
min_final_gc_ratio = (current_gc_count + min_future_gc) / final_length
max_final_gc_ratio = (current_gc_count + max_future_gc) / final_length
return min_final_gc_ratio, max_final_gc_ratio
def constrained_beam_search_simple(
logits: torch.Tensor,
protein_sequence: str,
gc_bounds: Tuple[float, float] = (0.30, 0.70),
max_attempts: int = 100,
) -> List[int]:
"""
Simple constrained search - try multiple greedy samples and pick best one within GC bounds.
"""
min_gc, max_gc = gc_bounds
seq_len = min(logits.shape[0], len(protein_sequence))
# Convert to probabilities
probs = torch.softmax(logits, dim=-1)
valid_sequences = []
for attempt in range(max_attempts):
tokens = []
total_gc = 0
# Generate sequence position by position
for pos in range(seq_len):
aa = protein_sequence[pos]
possible_tokens = AMINO_ACID_TO_INDEX.get(aa, [])
if not possible_tokens:
continue
# Filter tokens by current constraints and get probabilities
candidates = []
for token_idx in possible_tokens:
if token_idx < len(probs[pos]) and token_idx < len(GC_COUNTS_PER_TOKEN):
prob = probs[pos][token_idx].item()
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
# Check if this token could still lead to a valid final sequence (perfect foresight)
new_gc_total = total_gc + gc_contribution
new_length = (pos + 1) * 3
# Calculate what's possible for the final sequence given this choice
min_final_gc, max_final_gc = _calculate_true_future_gc_range(
pos + 1, protein_sequence, new_gc_total, new_length
)
# Only prune if there's NO OVERLAP between possible final range and target bounds
if max_final_gc >= min_gc and min_final_gc <= max_gc:
# Calculate gentle GC penalty to steer toward target center
target_gc = (min_gc + max_gc) / 2 # Target center (e.g., 0.50 for bounds 0.45-0.55)
current_projected_gc = (min_final_gc + max_final_gc) / 2 # Projected center
# Only apply penalty if we're significantly off-target AND late in sequence
sequence_progress = (pos + 1) / seq_len
if sequence_progress > 0.3: # Only apply penalty after 30% of sequence
gc_deviation = abs(current_projected_gc - target_gc)
if gc_deviation > 0.05: # Only if >5% deviation from target
# Gentle penalty: reduce probability by small factor
penalty_factor = max(0.7, 1.0 - 0.3 * gc_deviation) # 0.7-1.0 range
prob = prob * penalty_factor
candidates.append((token_idx, prob, gc_contribution))
if not candidates:
# If no valid candidates, break and try next attempt
break
# Sample from valid candidates (with temperature)
if attempt == 0:
# First attempt: greedy (highest probability)
best_token = max(candidates, key=lambda x: x[1])
else:
# Other attempts: sample with some randomness
probs_list = [c[1] for c in candidates]
if sum(probs_list) > 0:
# Normalize probabilities
probs_array = np.array(probs_list)
probs_array = probs_array / probs_array.sum()
# Sample
chosen_idx = np.random.choice(len(candidates), p=probs_array)
best_token = candidates[chosen_idx]
else:
best_token = candidates[0]
tokens.append(best_token[0])
total_gc += best_token[2]
# Check if we got a complete sequence
if len(tokens) == seq_len:
final_gc_ratio = total_gc / (seq_len * 3)
if min_gc <= final_gc_ratio <= max_gc:
# Calculate sequence score (sum of log probabilities)
score = sum(np.log(probs[i][tokens[i]].item() + 1e-8) for i in range(len(tokens)))
valid_sequences.append((tokens, score, final_gc_ratio))
if not valid_sequences:
raise ValueError(f"Could not generate valid sequence within GC bounds {gc_bounds} after {max_attempts} attempts")
# Return the sequence with highest score
best_sequence = max(valid_sequences, key=lambda x: x[1])
return best_sequence[0]
def constrained_beam_search(
logits: torch.Tensor,
protein_sequence: str,
gc_bounds: Tuple[float, float] = (0.30, 0.70),
beam_size: int = 5,
length_penalty: float = 1.0,
diversity_penalty: float = 0.0,
temperature: float = 1.0,
max_candidates: int = 100,
position_aware_gc_penalty: bool = True,
gc_penalty_strength: float = 2.0,
) -> List[int]:
"""
Constrained beam search with exact per-residue GC bounds tracking.
Priority #1: Exact per-residue GC bounds tracking
- Tracks cumulative GC content after each codon selection
- Prunes candidates that would violate GC bounds
- Maintains beam of valid candidates
Priority #2: Position-aware GC penalty mechanism
- Applies variable penalty weights based on sequence position
- Preserves flexibility early, applies pressure when necessary
- Uses progressive penalty scaling based on deviation severity
Args:
logits (torch.Tensor): Model logits of shape [seq_len, vocab_size]
protein_sequence (str): Input protein sequence
gc_bounds (Tuple[float, float]): (min_gc, max_gc) bounds
beam_size (int): Number of candidates to maintain
length_penalty (float): Length penalty for scoring
diversity_penalty (float): Diversity penalty for scoring
temperature (float): Temperature for probability scaling
max_candidates (int): Maximum candidates to consider per position
position_aware_gc_penalty (bool): Whether to use position-aware GC penalties
gc_penalty_strength (float): Strength of GC penalty adjustment
Returns:
List[int]: Best sequence token indices
"""
min_gc, max_gc = gc_bounds
seq_len = logits.shape[0]
protein_len = len(protein_sequence)
# Ensure we don't go beyond the protein sequence
if seq_len > protein_len:
print(f"Warning: logits length ({seq_len}) > protein length ({protein_len}). Truncating to protein length.")
seq_len = protein_len
logits = logits[:protein_len]
# Initialize beam with empty candidate
beam = [BeamCandidate(tokens=[], score=0.0, gc_count=0, length=0)]
# Apply temperature scaling
if temperature != 1.0:
logits = logits / temperature
# Convert to probabilities
probs = torch.softmax(logits, dim=-1)
for pos in range(min(seq_len, len(protein_sequence))):
# Get possible tokens for current amino acid
aa = protein_sequence[pos]
possible_tokens = AMINO_ACID_TO_INDEX.get(aa, [])
if not possible_tokens:
# Fallback to all tokens if amino acid not found
possible_tokens = list(range(probs.shape[1]))
# Get top candidates for this position
pos_probs = probs[pos]
top_candidates = []
for token_idx in possible_tokens:
if token_idx < len(pos_probs) and token_idx < len(GC_COUNTS_PER_TOKEN):
prob = pos_probs[token_idx].item()
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
# Only include tokens with valid probabilities
if prob > 1e-10: # Avoid extremely low probabilities
top_candidates.append((token_idx, prob, gc_contribution))
# Sort by probability and take top max_candidates
top_candidates.sort(key=lambda x: x[1], reverse=True)
top_candidates = top_candidates[:max_candidates]
# If no valid candidates found, fallback to all possible tokens for this amino acid
if not top_candidates:
for token_idx in possible_tokens[:min(len(possible_tokens), max_candidates)]:
if token_idx < len(pos_probs) and token_idx < len(GC_COUNTS_PER_TOKEN):
prob = max(pos_probs[token_idx].item(), 1e-10) # Ensure minimum probability
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
top_candidates.append((token_idx, prob, gc_contribution))
# Generate new beam candidates
new_beam = []
for candidate in beam:
for token_idx, prob, gc_contribution in top_candidates:
# Calculate new GC stats
new_gc_count = candidate.gc_count + gc_contribution
new_length = candidate.length + 3 # Each codon is 3 nucleotides
new_gc_ratio = new_gc_count / new_length
# Priority #2: Position-aware GC penalty mechanism
gc_penalty = 0.0
if position_aware_gc_penalty:
# Calculate position weight (more penalty towards end of sequence)
position_weight = (pos + 1) / seq_len
# Calculate GC deviation severity
target_gc = (min_gc + max_gc) / 2
gc_deviation = abs(new_gc_ratio - target_gc)
deviation_severity = gc_deviation / ((max_gc - min_gc) / 2)
# Apply progressive penalty
if deviation_severity > 0.5: # Soft penalty zone
gc_penalty = gc_penalty_strength * position_weight * (deviation_severity - 0.5) ** 2
# Hard constraint: still prune sequences that exceed bounds
if new_gc_ratio < min_gc or new_gc_ratio > max_gc:
continue # Prune invalid candidates
else:
# Priority #1: Hard GC bounds only
if new_gc_ratio < min_gc or new_gc_ratio > max_gc:
continue # Prune invalid candidates
# Calculate score with GC penalty
new_score = candidate.score + np.log(prob + 1e-8) - gc_penalty
# Apply length penalty
if length_penalty != 1.0:
length_norm = ((pos + 1) ** length_penalty)
normalized_score = new_score / length_norm
else:
normalized_score = new_score
# Create new candidate
new_candidate = BeamCandidate(
tokens=candidate.tokens + [token_idx],
score=normalized_score,
gc_count=new_gc_count,
length=new_length
)
new_beam.append(new_candidate)
# Apply diversity penalty if specified
if diversity_penalty > 0.0:
new_beam = _apply_diversity_penalty(new_beam, diversity_penalty)
# Keep top beam_size candidates
beam = sorted(new_beam, key=lambda x: x.score, reverse=True)[:beam_size]
# Priority #3: Adaptive beam rescue for difficult sequences
if not beam:
# Attempt beam rescue by relaxing constraints progressively
rescue_attempts = 0
max_rescue_attempts = 3
while not beam and rescue_attempts < max_rescue_attempts:
rescue_attempts += 1
# Progressive relaxation strategy
if rescue_attempts == 1:
# First attempt: increase beam size and relax GC bounds slightly
temp_beam_size = min(beam_size * 2, max_candidates)
temp_gc_bounds = (min_gc * 0.95, max_gc * 1.05)
elif rescue_attempts == 2:
# Second attempt: further relax GC bounds and increase candidates
temp_beam_size = min(beam_size * 3, max_candidates)
temp_gc_bounds = (min_gc * 0.9, max_gc * 1.1)
else:
# Final attempt: maximum relaxation
temp_beam_size = max_candidates
temp_gc_bounds = (min_gc * 0.85, max_gc * 1.15)
# Retry beam generation with relaxed parameters
rescue_beam = []
# Use previous beam state or start fresh if this is the first position with no beam
previous_beam = beam if beam else [BeamCandidate(tokens=[], score=0.0, gc_count=0, length=0)]
for candidate in previous_beam:
for token_idx, prob, gc_contribution in top_candidates:
new_gc_count = candidate.gc_count + gc_contribution
new_length = candidate.length + 3
new_gc_ratio = new_gc_count / new_length
# Check relaxed bounds
if temp_gc_bounds[0] <= new_gc_ratio <= temp_gc_bounds[1]:
# Apply reduced GC penalty for rescue
gc_penalty = 0.0
if position_aware_gc_penalty:
position_weight = (pos + 1) / seq_len
target_gc = (min_gc + max_gc) / 2
gc_deviation = abs(new_gc_ratio - target_gc)
deviation_severity = gc_deviation / ((max_gc - min_gc) / 2)
# Reduced penalty for rescue
if deviation_severity > 0.7:
gc_penalty = (gc_penalty_strength * 0.5) * position_weight * (deviation_severity - 0.7) ** 2
new_score = candidate.score + np.log(prob + 1e-8) - gc_penalty
if length_penalty != 1.0:
length_norm = ((pos + 1) ** length_penalty)
normalized_score = new_score / length_norm
else:
normalized_score = new_score
rescue_candidate = BeamCandidate(
tokens=candidate.tokens + [token_idx],
score=normalized_score,
gc_count=new_gc_count,
length=new_length
)
rescue_beam.append(rescue_candidate)
# Keep top candidates from rescue attempt
if rescue_beam:
beam = sorted(rescue_beam, key=lambda x: x.score, reverse=True)[:temp_beam_size]
break
# If all rescue attempts failed, raise error
if not beam:
raise ValueError(
f"Beam rescue failed at position {pos} after {max_rescue_attempts} attempts. "
f"The GC constraints {gc_bounds} may be too restrictive for this protein sequence. "
f"Consider relaxing constraints or using a different approach."
)
# Return best candidate
best_candidate = max(beam, key=lambda x: x.score)
return best_candidate.tokens
# Wrapper function that tries simple approach first
def constrained_beam_search_wrapper(
logits: torch.Tensor,
protein_sequence: str,
gc_bounds: Tuple[float, float] = (0.30, 0.70),
**kwargs
) -> List[int]:
"""Wrapper that tries simple approach first, falls back to complex beam search."""
try:
# Try simple approach first
return constrained_beam_search_simple(logits, protein_sequence, gc_bounds)
except ValueError:
# Fall back to complex beam search
return constrained_beam_search(logits, protein_sequence, gc_bounds, **kwargs)
def _apply_diversity_penalty(candidates: List[BeamCandidate], penalty: float) -> List[BeamCandidate]:
"""
Apply diversity penalty to reduce repetitive sequences.
Args:
candidates (List[BeamCandidate]): List of candidates
penalty (float): Diversity penalty strength
Returns:
List[BeamCandidate]: Candidates with diversity penalty applied
"""
if not candidates:
return candidates
# Count token occurrences
token_counts = {}
for candidate in candidates:
for token in candidate.tokens:
token_counts[token] = token_counts.get(token, 0) + 1
# Apply penalty
for candidate in candidates:
diversity_score = 0.0
for token in candidate.tokens:
if token_counts[token] > 1:
diversity_score += penalty * np.log(token_counts[token])
candidate.score -= diversity_score
return candidates
def sample_non_deterministic(
logits: torch.Tensor,
temperature: float = 0.2,
top_p: float = 0.95,
) -> List[int]:
"""
Sample token indices from logits using temperature scaling and nucleus (top-p) sampling.
This function applies temperature scaling to the logits, computes probabilities,
and then performs nucleus sampling to select token indices. It is used for
non-deterministic decoding in language models to introduce randomness while
maintaining coherence in the generated sequences.
Args:
logits (torch.Tensor): The logits output from the model of shape
[seq_len, vocab_size] or [batch_size, seq_len, vocab_size].
temperature (float, optional): Temperature value for scaling logits.
Must be a positive float. Defaults to 1.0.
top_p (float, optional): Cumulative probability threshold for nucleus sampling.
Must be a float between 0 and 1. Tokens with cumulative probability up to
`top_p` are considered for sampling. Defaults to 0.95.
Returns:
List[int]: A list of sampled token indices corresponding to the predicted tokens.
Raises:
ValueError: If `temperature` is not a positive float or if `top_p` is not between 0 and 1.
Example:
>>> logits = model_output.logits # Assume logits is a tensor of shape [seq_len, vocab_size]
>>> predicted_indices = sample_non_deterministic(logits, temperature=0.7, top_p=0.9)
"""
if not isinstance(temperature, (float, int)) or temperature <= 0:
raise ValueError("Temperature must be a positive float.")
if not isinstance(top_p, (float, int)) or not 0 < top_p <= 1.0:
raise ValueError("top_p must be a float between 0 and 1.")
# Compute probabilities using temperature scaling
probs = torch.softmax(logits / temperature, dim=-1)
# Remove batch dimension if present
if probs.dim() == 3:
probs = probs.squeeze(0) # Shape: [seq_len, vocab_size]
# Sort probabilities in descending order
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > top_p
# Zero out probabilities for tokens beyond the top-p threshold
probs_sort[mask] = 0.0
# Renormalize the probabilities
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
predicted_indices = torch.gather(probs_idx, -1, next_token).squeeze(-1)
return predicted_indices.tolist()
def load_model(
model_path: Optional[str] = None,
device: torch.device = None,
attention_type: str = "original_full",
num_organisms: int = None,
remove_prefix: bool = True,
) -> torch.nn.Module:
"""
Load a BigBirdForMaskedLM model from a model file, checkpoint, or HuggingFace.
Args:
model_path (Optional[str]): Path to the model file or checkpoint. If None,
load from HuggingFace.
device (torch.device, optional): The device to load the model onto.
attention_type (str, optional): The type of attention, 'block_sparse'
or 'original_full'.
num_organisms (int, optional): Number of organisms, needed if loading from a
checkpoint that requires this.
remove_prefix (bool, optional): Whether to remove the "model." prefix from the
keys in the state dict.
Returns:
torch.nn.Module: The loaded model.
"""
if not model_path:
warnings.warn("Model path not provided. Loading from HuggingFace.", UserWarning)
model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
elif model_path.endswith(".ckpt"):
checkpoint = torch.load(model_path, map_location="cpu")
# Detect Lightning checkpoint vs raw state dict
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
if remove_prefix:
state_dict = {
k.replace("model.", ""): v for k, v in state_dict.items()
}
else:
# assume checkpoint itself is state_dict
state_dict = checkpoint
if num_organisms is None:
num_organisms = NUM_ORGANISMS
# Load model configuration and instantiate the model
config = load_bigbird_config(num_organisms)
model = BigBirdForMaskedLM(config=config)
model.load_state_dict(state_dict, strict=False)
elif model_path.endswith(".pt"):
state_dict = torch.load(model_path)
config = state_dict.pop("self.config")
model = BigBirdForMaskedLM(config=config)
model.load_state_dict(state_dict, strict=False)
else:
raise ValueError(
"Unsupported file type. Please provide a .ckpt or .pt file, "
"or None to load from HuggingFace."
)
# Prepare model for evaluation
model.bert.set_attention_type(attention_type)
model.eval()
if device:
model.to(device)
return model
def load_bigbird_config(num_organisms: int) -> BigBirdConfig:
"""
Load the config object used to train the BigBird transformer.
Args:
num_organisms (int): The number of organisms.
Returns:
BigBirdConfig: The configuration object for BigBird.
"""
config = transformers.BigBirdConfig(
vocab_size=len(TOKEN2INDEX), # Equal to len(tokenizer)
type_vocab_size=num_organisms,
sep_token_id=2,
)
return config
def create_model_from_checkpoint(
checkpoint_dir: str, output_model_dir: str, num_organisms: int
) -> None:
"""
Save a model to disk using a previous checkpoint.
Args:
checkpoint_dir (str): Directory where the checkpoint is stored.
output_model_dir (str): Directory where the model will be saved.
num_organisms (int): Number of organisms.
"""
checkpoint = load_model(model_path=checkpoint_dir, num_organisms=num_organisms)
state_dict = checkpoint.state_dict()
state_dict["self.config"] = load_bigbird_config(num_organisms=num_organisms)
# Save the model state dict to the output directory
torch.save(state_dict, output_model_dir)
def load_tokenizer(tokenizer_path: Optional[Union[str, PreTrainedTokenizerFast]] = None) -> PreTrainedTokenizerFast:
"""
Create and return a tokenizer object from tokenizer path or HuggingFace.
Args:
tokenizer_path (Optional[Union[str, PreTrainedTokenizerFast]]): Path to the tokenizer file,
a pre-loaded tokenizer object, or None. If None, load from HuggingFace.
Returns:
PreTrainedTokenizerFast: The tokenizer object.
"""
# If a tokenizer object is already provided, return it
if isinstance(tokenizer_path, PreTrainedTokenizerFast):
return tokenizer_path
# If no path is provided, load from HuggingFace
if not tokenizer_path:
warnings.warn(
"Tokenizer path not provided. Loading from HuggingFace.", UserWarning
)
return AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
# Load from file path
return transformers.PreTrainedTokenizerFast(
tokenizer_file=tokenizer_path,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
)
def tokenize(
batch: List[Dict[str, Any]],
tokenizer: Union[PreTrainedTokenizerFast, str] = None,
max_len: int = 2048,
) -> BatchEncoding:
"""
Return the tokenized sequences given a batch of input data.
Each data in the batch is expected to be a dictionary with "codons" and
"organism" keys.
Args:
batch (List[Dict[str, Any]]): A list of dictionaries with "codons" and
"organism" keys.
tokenizer (PreTrainedTokenizerFast, str, optional): The tokenizer object or
path to the tokenizer file.
max_len (int, optional): Maximum length of the tokenized sequence.
Returns:
BatchEncoding: The tokenized batch.
"""
if not isinstance(tokenizer, PreTrainedTokenizerFast):
tokenizer = load_tokenizer(tokenizer)
tokenized = tokenizer(
[data["codons"] for data in batch],
return_attention_mask=True,
return_token_type_ids=True,
truncation=True,
padding=True,
max_length=max_len,
return_tensors="pt",
)
# Add token type IDs for species
seq_len = tokenized["input_ids"].shape[-1]
species_index = torch.tensor([[data["organism"]] for data in batch])
tokenized["token_type_ids"] = species_index.repeat(1, seq_len)
return tokenized
def validate_and_convert_organism(organism: Union[int, str]) -> Tuple[int, str]:
"""
Validate and convert the organism input to both ID and name.
This function takes either an organism ID or name as input and returns both
the ID and name. It performs validation to ensure the input corresponds to
a valid organism in the ORGANISM2ID dictionary.
Args:
organism (Union[int, str]): Either the ID of the organism (int) or its
name (str).
Returns:
Tuple[int, str]: A tuple containing the organism ID (int) and name (str).
Raises:
ValueError: If the input is neither a string nor an integer, if the
organism name is not found in ORGANISM2ID, if the organism ID is not a
value in ORGANISM2ID, or if no name is found for a given ID.
Note:
This function relies on the ORGANISM2ID dictionary imported from
CodonTransformer.CodonUtils, which maps organism names to their
corresponding IDs.
"""
if isinstance(organism, str):
if organism not in ORGANISM2ID:
raise ValueError(
f"Invalid organism name: {organism}. "
"Please use a valid organism name or ID."
)
organism_id = ORGANISM2ID[organism]
organism_name = organism
elif isinstance(organism, int):
if organism not in ORGANISM2ID.values():
raise ValueError(
f"Invalid organism ID: {organism}. "
"Please use a valid organism name or ID."
)
organism_id = organism
organism_name = next(
(name for name, id in ORGANISM2ID.items() if id == organism), None
)
if organism_name is None:
raise ValueError(f"No organism name found for ID: {organism}")
return organism_id, organism_name
def get_high_frequency_choice_sequence(
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
) -> str:
"""
Return the DNA sequence optimized using High Frequency Choice (HFC) approach
in which the most frequent codon for a given amino acid is always chosen.
Args:
protein (str): The protein sequence.
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
str: The optimized DNA sequence.
"""
# Select the most frequent codon for each amino acid in the protein sequence
dna_codons = [
codon_frequencies[aminoacid][0][np.argmax(codon_frequencies[aminoacid][1])]
for aminoacid in protein
]
return "".join(dna_codons)
def precompute_most_frequent_codons(
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
) -> Dict[str, str]:
"""
Precompute the most frequent codon for each amino acid.
Args:
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
Dict[str, str]: The most frequent codon for each amino acid.
"""
# Create a dictionary mapping each amino acid to its most frequent codon
return {
aminoacid: codons[np.argmax(frequencies)]
for aminoacid, (codons, frequencies) in codon_frequencies.items()
}
def get_high_frequency_choice_sequence_optimized(
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
) -> str:
"""
Efficient implementation of get_high_frequency_choice_sequence that uses
vectorized operations and helper functions, achieving up to x10 faster speed.
Args:
protein (str): The protein sequence.
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
str: The optimized DNA sequence.
"""
# Precompute the most frequent codons for each amino acid
most_frequent_codons = precompute_most_frequent_codons(codon_frequencies)
return "".join(most_frequent_codons[aminoacid] for aminoacid in protein)
def get_background_frequency_choice_sequence(
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
) -> str:
"""
Return the DNA sequence optimized using Background Frequency Choice (BFC)
approach in which a random codon for a given amino acid is chosen using
the codon frequencies probability distribution.
Args:
protein (str): The protein sequence.
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
str: The optimized DNA sequence.
"""
# Select a random codon for each amino acid based on the codon frequencies
# probability distribution
dna_codons = [
np.random.choice(
codon_frequencies[aminoacid][0], p=codon_frequencies[aminoacid][1]
)
for aminoacid in protein
]
return "".join(dna_codons)
def precompute_cdf(
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
) -> Dict[str, Tuple[List[str], Any]]:
"""
Precompute the cumulative distribution function (CDF) for each amino acid.
Args:
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
Dict[str, Tuple[List[str], Any]]: CDFs for each amino acid.
"""
cdf = {}
# Calculate the cumulative distribution function for each amino acid
for aminoacid, (codons, frequencies) in codon_frequencies.items():
cdf[aminoacid] = (codons, np.cumsum(frequencies))
return cdf
def get_background_frequency_choice_sequence_optimized(
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
) -> str:
"""
Efficient implementation of get_background_frequency_choice_sequence that uses
vectorized operations and helper functions, achieving up to x8 faster speed.
Args:
protein (str): The protein sequence.
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
str: The optimized DNA sequence.
"""
dna_codons = []
cdf = precompute_cdf(codon_frequencies)
# Select a random codon for each amino acid using the precomputed CDFs
for aminoacid in protein:
codons, cumulative_prob = cdf[aminoacid]
selected_codon_index = np.searchsorted(cumulative_prob, np.random.rand())
dna_codons.append(codons[selected_codon_index])
return "".join(dna_codons)
def get_uniform_random_choice_sequence(
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
) -> str:
"""
Return the DNA sequence optimized using Uniform Random Choice (URC) approach
in which a random codon for a given amino acid is chosen using a uniform
prior.
Args:
protein (str): The protein sequence.
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
frequencies for each amino acid.
Returns:
str: The optimized DNA sequence.
"""
# Select a random codon for each amino acid using a uniform prior distribution
dna_codons = []
for aminoacid in protein:
codons = codon_frequencies[aminoacid][0]
random_index = np.random.randint(0, len(codons))
dna_codons.append(codons[random_index])
return "".join(dna_codons)
def get_icor_prediction(input_seq: str, model_path: str, stop_symbol: str) -> str:
"""
Return the optimized codon sequence for the given protein sequence using ICOR.
Credit: ICOR: improving codon optimization with recurrent neural networks
Rishab Jain, Aditya Jain, Elizabeth Mauro, Kevin LeShane, Douglas
Densmore
Args:
input_seq (str): The input protein sequence.
model_path (str): The path to the ICOR model.
stop_symbol (str): The symbol representing stop codons in the sequence.
Returns:
str: The optimized DNA sequence.
"""
input_seq = input_seq.strip().upper()
input_seq = input_seq.replace(stop_symbol, "*")
# Define categorical labels from when model was trained.
labels = [
"AAA",
"AAC",
"AAG",
"AAT",
"ACA",
"ACG",
"ACT",
"AGC",
"ATA",
"ATC",
"ATG",
"ATT",
"CAA",
"CAC",
"CAG",
"CCG",
"CCT",
"CTA",
"CTC",
"CTG",
"CTT",
"GAA",
"GAT",
"GCA",
"GCC",
"GCG",
"GCT",
"GGA",
"GGC",
"GTC",
"GTG",
"GTT",
"TAA",
"TAT",
"TCA",
"TCG",
"TCT",
"TGG",
"TGT",
"TTA",
"TTC",
"TTG",
"TTT",
"ACC",
"CAT",
"CCA",
"CGG",
"CGT",
"GAC",
"GAG",
"GGT",
"AGT",
"GGG",
"GTA",
"TGC",
"CCC",
"CGA",
"CGC",
"TAC",
"TAG",
"TCC",
"AGA",
"AGG",
"TGA",
]
# Define aa to integer table
def aa2int(seq: str) -> List[int]:
_aa2int = {
"A": 1,
"R": 2,
"N": 3,
"D": 4,
"C": 5,
"Q": 6,
"E": 7,
"G": 8,
"H": 9,
"I": 10,
"L": 11,
"K": 12,
"M": 13,
"F": 14,
"P": 15,
"S": 16,
"T": 17,
"W": 18,
"Y": 19,
"V": 20,
"B": 21,
"Z": 22,
"X": 23,
"*": 24,
"-": 25,
"?": 26,
}
return [_aa2int[i] for i in seq]
# Create empty array to fill
oh_array = np.zeros(shape=(26, len(input_seq)))
# Load placements from aa2int
aa_placement = aa2int(input_seq)
# One-hot encode the amino acid sequence:
# style nit: more pythonic to write for i in range(0, len(aa_placement)):
for i in range(0, len(aa_placement)):
oh_array[aa_placement[i], i] = 1
i += 1
oh_array = [oh_array]
x = np.array(np.transpose(oh_array))
y = x.astype(np.float32)
y = np.reshape(y, (y.shape[0], 1, 26))
# Start ICOR session using model.
sess = rt.InferenceSession(model_path)
input_name = sess.get_inputs()[0].name
# Get prediction:
pred_onx = sess.run(None, {input_name: y})
# Get the index of the highest probability from softmax output:
pred_indices = []
for pred in pred_onx[0]:
pred_indices.append(np.argmax(pred))
out_str = ""
for index in pred_indices:
out_str += labels[index]
return out_str
|