File size: 25,229 Bytes
6e9b5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""
File: CodonUtils.py
---------------------
Includes constants and helper functions used by other Python scripts.
"""

import itertools
import json
import os
import pickle
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Dict, Iterator, List, Optional, Tuple

import pandas as pd
import requests
import torch

# List of all amino acids
AMINO_ACIDS: List[str] = [
    "A",  # Alanine
    "C",  # Cysteine
    "D",  # Aspartic acid
    "E",  # Glutamic acid
    "F",  # Phenylalanine
    "G",  # Glycine
    "H",  # Histidine
    "I",  # Isoleucine
    "K",  # Lysine
    "L",  # Leucine
    "M",  # Methionine
    "N",  # Asparagine
    "P",  # Proline
    "Q",  # Glutamine
    "R",  # Arginine
    "S",  # Serine
    "T",  # Threonine
    "V",  # Valine
    "W",  # Tryptophan
    "Y",  # Tyrosine
]
STOP_SYMBOLS = ["_", "*"]  # Stop codon symbols

# Dictionary ambiguous amino acids to standard amino acids
AMBIGUOUS_AMINOACID_MAP: Dict[str, list[str]] = {
    "B": ["N", "D"],  # Asparagine (N) or Aspartic acid (D)
    "Z": ["Q", "E"],  # Glutamine (Q) or Glutamic acid (E)
    "X": ["A"],  # Any amino acid (typically replaced with Alanine)
    "J": ["L", "I"],  # Leucine (L) or Isoleucine (I)
    "U": ["C"],  # Selenocysteine (typically replaced with Cysteine)
    "O": ["K"],  # Pyrrolysine (typically replaced with Lysine)
}

# List of all possible start and stop codons
START_CODONS: List[str] = ["ATG", "TTG", "CTG", "GTG"]
STOP_CODONS: List[str] = ["TAA", "TAG", "TGA"]

# Token-to-index mapping for amino acids and special tokens
TOKEN2INDEX: Dict[str, int] = {
    "[UNK]": 0,
    "[CLS]": 1,
    "[SEP]": 2,
    "[PAD]": 3,
    "[MASK]": 4,
    "a_unk": 5,
    "c_unk": 6,
    "d_unk": 7,
    "e_unk": 8,
    "f_unk": 9,
    "g_unk": 10,
    "h_unk": 11,
    "i_unk": 12,
    "k_unk": 13,
    "l_unk": 14,
    "m_unk": 15,
    "n_unk": 16,
    "p_unk": 17,
    "q_unk": 18,
    "r_unk": 19,
    "s_unk": 20,
    "t_unk": 21,
    "v_unk": 22,
    "w_unk": 23,
    "y_unk": 24,
    "__unk": 25,
    "k_aaa": 26,
    "n_aac": 27,
    "k_aag": 28,
    "n_aat": 29,
    "t_aca": 30,
    "t_acc": 31,
    "t_acg": 32,
    "t_act": 33,
    "r_aga": 34,
    "s_agc": 35,
    "r_agg": 36,
    "s_agt": 37,
    "i_ata": 38,
    "i_atc": 39,
    "m_atg": 40,
    "i_att": 41,
    "q_caa": 42,
    "h_cac": 43,
    "q_cag": 44,
    "h_cat": 45,
    "p_cca": 46,
    "p_ccc": 47,
    "p_ccg": 48,
    "p_cct": 49,
    "r_cga": 50,
    "r_cgc": 51,
    "r_cgg": 52,
    "r_cgt": 53,
    "l_cta": 54,
    "l_ctc": 55,
    "l_ctg": 56,
    "l_ctt": 57,
    "e_gaa": 58,
    "d_gac": 59,
    "e_gag": 60,
    "d_gat": 61,
    "a_gca": 62,
    "a_gcc": 63,
    "a_gcg": 64,
    "a_gct": 65,
    "g_gga": 66,
    "g_ggc": 67,
    "g_ggg": 68,
    "g_ggt": 69,
    "v_gta": 70,
    "v_gtc": 71,
    "v_gtg": 72,
    "v_gtt": 73,
    "__taa": 74,
    "y_tac": 75,
    "__tag": 76,
    "y_tat": 77,
    "s_tca": 78,
    "s_tcc": 79,
    "s_tcg": 80,
    "s_tct": 81,
    "__tga": 82,
    "c_tgc": 83,
    "w_tgg": 84,
    "c_tgt": 85,
    "l_tta": 86,
    "f_ttc": 87,
    "l_ttg": 88,
    "f_ttt": 89,
}

# Index-to-token mapping, reverse of TOKEN2INDEX
INDEX2TOKEN: Dict[int, str] = {i: c for c, i in TOKEN2INDEX.items()}

# Dictionary mapping each codon to its GC content
CODON_GC_CONTENT: Dict[str, int] = {
    token.split("_")[1]: token.split("_")[1].upper().count("G") + token.split("_")[1].upper().count("C")
    for token in TOKEN2INDEX
    if "_" in token and len(token.split("_")[1]) == 3
}

# Tensor with GC counts for each token in the vocabulary
GC_COUNTS_PER_TOKEN = torch.zeros(len(TOKEN2INDEX))
for token, index in TOKEN2INDEX.items():
    if "_" in token and len(token.split("_")[1]) == 3:
        codon = token.split("_")[1].upper()
        gc_count = codon.count("G") + codon.count("C")
        GC_COUNTS_PER_TOKEN[index] = gc_count

G_indices = [idx for token, idx in TOKEN2INDEX.items() if "g" in token.split("_")[-1]]
C_indices = [idx for token, idx in TOKEN2INDEX.items() if "c" in token.split("_")[-1]]

# Dictionary mapping each amino acid and stop symbol to indices of codon tokens that translate to it
AMINO_ACID_TO_INDEX = {
    aa: sorted(
        [i for t, i in TOKEN2INDEX.items() if t[0].upper() == aa and t[-3:] != "unk"]
    )
    for aa in (AMINO_ACIDS + STOP_SYMBOLS)
}


# Dictionary mapping each amino acid to min/max GC content across all possible codons
AA_MIN_GC: Dict[str, int] = {}
AA_MAX_GC: Dict[str, int] = {}

for aa, token_indices in AMINO_ACID_TO_INDEX.items():
    if token_indices:  # Skip if no tokens for this amino acid
        gc_counts = []
        for token_idx in token_indices:
            token = INDEX2TOKEN[token_idx]
            if "_" in token and len(token.split("_")[1]) == 3:
                codon = token.split("_")[1]
                if codon in CODON_GC_CONTENT:
                    gc_counts.append(CODON_GC_CONTENT[codon])
        
        if gc_counts:
            AA_MIN_GC[aa] = min(gc_counts)
            AA_MAX_GC[aa] = max(gc_counts)

# Mask token mapping
TOKEN2MASK: Dict[int, int] = {
    0: 0,
    1: 1,
    2: 2,
    3: 3,
    4: 4,
    5: 5,
    6: 6,
    7: 7,
    8: 8,
    9: 9,
    10: 10,
    11: 11,
    12: 12,
    13: 13,
    14: 14,
    15: 15,
    16: 16,
    17: 17,
    18: 18,
    19: 19,
    20: 20,
    21: 21,
    22: 22,
    23: 23,
    24: 24,
    25: 25,
    26: 13,
    27: 16,
    28: 13,
    29: 16,
    30: 21,
    31: 21,
    32: 21,
    33: 21,
    34: 19,
    35: 20,
    36: 19,
    37: 20,
    38: 12,
    39: 12,
    40: 15,
    41: 12,
    42: 18,
    43: 11,
    44: 18,
    45: 11,
    46: 17,
    47: 17,
    48: 17,
    49: 17,
    50: 19,
    51: 19,
    52: 19,
    53: 19,
    54: 14,
    55: 14,
    56: 14,
    57: 14,
    58: 8,
    59: 7,
    60: 8,
    61: 7,
    62: 5,
    63: 5,
    64: 5,
    65: 5,
    66: 10,
    67: 10,
    68: 10,
    69: 10,
    70: 22,
    71: 22,
    72: 22,
    73: 22,
    74: 25,
    75: 24,
    76: 25,
    77: 24,
    78: 20,
    79: 20,
    80: 20,
    81: 20,
    82: 25,
    83: 6,
    84: 23,
    85: 6,
    86: 14,
    87: 9,
    88: 14,
    89: 9,
}

# List of organisms used for fine-tuning
FINE_TUNE_ORGANISMS: List[str] = [
    "Arabidopsis thaliana",
    "Bacillus subtilis",
    "Caenorhabditis elegans",
    "Chlamydomonas reinhardtii",
    "Chlamydomonas reinhardtii chloroplast",
    "Danio rerio",
    "Drosophila melanogaster",
    "Homo sapiens",
    "Mus musculus",
    "Nicotiana tabacum",
    "Nicotiana tabacum chloroplast",
    "Pseudomonas putida",
    "Saccharomyces cerevisiae",
    "Escherichia coli O157-H7 str. Sakai",
    "Escherichia coli general",
    "Escherichia coli str. K-12 substr. MG1655",
    "Thermococcus barophilus MPT",
]

# List of organisms most commonly used for coodn optimization
COMMON_ORGANISMS: List[str] = [
    "Arabidopsis thaliana",
    "Bacillus subtilis",
    "Caenorhabditis elegans",
    "Chlamydomonas reinhardtii",
    "Danio rerio",
    "Drosophila melanogaster",
    "Homo sapiens",
    "Mus musculus",
    "Nicotiana tabacum",
    "Pseudomonas putida",
    "Saccharomyces cerevisiae",
    "Escherichia coli general",
]

# Dictionary mapping each organism name to respective organism id
ORGANISM2ID: Dict[str, int] = {
    "Arabidopsis thaliana": 0,
    "Atlantibacter hermannii": 1,
    "Bacillus subtilis": 2,
    "Brenneria goodwinii": 3,
    "Buchnera aphidicola (Schizaphis graminum)": 4,
    "Caenorhabditis elegans": 5,
    "Candidatus Erwinia haradaeae": 6,
    "Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)": 7,
    "Chlamydomonas reinhardtii": 8,
    "Chlamydomonas reinhardtii chloroplast": 9,
    "Citrobacter amalonaticus": 10,
    "Citrobacter braakii": 11,
    "Citrobacter cronae": 12,
    "Citrobacter europaeus": 13,
    "Citrobacter farmeri": 14,
    "Citrobacter freundii": 15,
    "Citrobacter koseri ATCC BAA-895": 16,
    "Citrobacter portucalensis": 17,
    "Citrobacter werkmanii": 18,
    "Citrobacter youngae": 19,
    "Cronobacter dublinensis subsp. dublinensis LMG 23823": 20,
    "Cronobacter malonaticus LMG 23826": 21,
    "Cronobacter sakazakii": 22,
    "Cronobacter turicensis": 23,
    "Danio rerio": 24,
    "Dickeya dadantii 3937": 25,
    "Dickeya dianthicola": 26,
    "Dickeya fangzhongdai": 27,
    "Dickeya solani": 28,
    "Dickeya zeae": 29,
    "Drosophila melanogaster": 30,
    "Edwardsiella anguillarum ET080813": 31,
    "Edwardsiella ictaluri": 32,
    "Edwardsiella piscicida": 33,
    "Edwardsiella tarda": 34,
    "Enterobacter asburiae": 35,
    "Enterobacter bugandensis": 36,
    "Enterobacter cancerogenus": 37,
    "Enterobacter chengduensis": 38,
    "Enterobacter cloacae": 39,
    "Enterobacter hormaechei": 40,
    "Enterobacter kobei": 41,
    "Enterobacter ludwigii": 42,
    "Enterobacter mori": 43,
    "Enterobacter quasiroggenkampii": 44,
    "Enterobacter roggenkampii": 45,
    "Enterobacter sichuanensis": 46,
    "Erwinia amylovora CFBP1430": 47,
    "Erwinia persicina": 48,
    "Escherichia albertii": 49,
    "Escherichia coli O157-H7 str. Sakai": 50,
    "Escherichia coli general": 51,
    "Escherichia coli str. K-12 substr. MG1655": 52,
    "Escherichia fergusonii": 53,
    "Escherichia marmotae": 54,
    "Escherichia ruysiae": 55,
    "Ewingella americana": 56,
    "Hafnia alvei": 57,
    "Hafnia paralvei": 58,
    "Homo sapiens": 59,
    "Kalamiella piersonii": 60,
    "Klebsiella aerogenes": 61,
    "Klebsiella grimontii": 62,
    "Klebsiella michiganensis": 63,
    "Klebsiella oxytoca": 64,
    "Klebsiella pasteurii": 65,
    "Klebsiella pneumoniae subsp. pneumoniae HS11286": 66,
    "Klebsiella quasipneumoniae": 67,
    "Klebsiella quasivariicola": 68,
    "Klebsiella variicola": 69,
    "Kosakonia cowanii": 70,
    "Kosakonia radicincitans": 71,
    "Leclercia adecarboxylata": 72,
    "Lelliottia amnigena": 73,
    "Lonsdalea populi": 74,
    "Moellerella wisconsensis": 75,
    "Morganella morganii": 76,
    "Mus musculus": 77,
    "Nicotiana tabacum": 78,
    "Nicotiana tabacum chloroplast": 79,
    "Obesumbacterium proteus": 80,
    "Pantoea agglomerans": 81,
    "Pantoea allii": 82,
    "Pantoea ananatis PA13": 83,
    "Pantoea dispersa": 84,
    "Pantoea stewartii": 85,
    "Pantoea vagans": 86,
    "Pectobacterium aroidearum": 87,
    "Pectobacterium atrosepticum": 88,
    "Pectobacterium brasiliense": 89,
    "Pectobacterium carotovorum": 90,
    "Pectobacterium odoriferum": 91,
    "Pectobacterium parmentieri": 92,
    "Pectobacterium polaris": 93,
    "Pectobacterium versatile": 94,
    "Photorhabdus laumondii subsp. laumondii TTO1": 95,
    "Plesiomonas shigelloides": 96,
    "Pluralibacter gergoviae": 97,
    "Proteus faecis": 98,
    "Proteus mirabilis HI4320": 99,
    "Proteus penneri": 100,
    "Proteus terrae subsp. cibarius": 101,
    "Proteus vulgaris": 102,
    "Providencia alcalifaciens": 103,
    "Providencia heimbachae": 104,
    "Providencia rettgeri": 105,
    "Providencia rustigianii": 106,
    "Providencia stuartii": 107,
    "Providencia thailandensis": 108,
    "Pseudomonas putida": 109,
    "Pyrococcus furiosus": 110,
    "Pyrococcus horikoshii": 111,
    "Pyrococcus yayanosii": 112,
    "Rahnella aquatilis CIP 78.65 = ATCC 33071": 113,
    "Raoultella ornithinolytica": 114,
    "Raoultella planticola": 115,
    "Raoultella terrigena": 116,
    "Rosenbergiella epipactidis": 117,
    "Rouxiella badensis": 118,
    "Saccharolobus solfataricus": 119,
    "Saccharomyces cerevisiae": 120,
    "Salmonella bongori N268-08": 121,
    "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2": 122,
    "Serratia bockelmannii": 123,
    "Serratia entomophila": 124,
    "Serratia ficaria": 125,
    "Serratia fonticola": 126,
    "Serratia grimesii": 127,
    "Serratia liquefaciens": 128,
    "Serratia marcescens": 129,
    "Serratia nevei": 130,
    "Serratia plymuthica AS9": 131,
    "Serratia proteamaculans": 132,
    "Serratia quinivorans": 133,
    "Serratia rubidaea": 134,
    "Serratia ureilytica": 135,
    "Shigella boydii": 136,
    "Shigella dysenteriae": 137,
    "Shigella flexneri 2a str. 301": 138,
    "Shigella sonnei": 139,
    "Thermoccoccus kodakarensis": 140,
    "Thermococcus barophilus MPT": 141,
    "Thermococcus chitonophagus": 142,
    "Thermococcus gammatolerans": 143,
    "Thermococcus litoralis": 144,
    "Thermococcus onnurineus": 145,
    "Thermococcus sibiricus": 146,
    "Xenorhabdus bovienii str. feltiae Florida": 147,
    "Yersinia aldovae 670-83": 148,
    "Yersinia aleksiciae": 149,
    "Yersinia alsatica": 150,
    "Yersinia enterocolitica": 151,
    "Yersinia frederiksenii ATCC 33641": 152,
    "Yersinia intermedia": 153,
    "Yersinia kristensenii": 154,
    "Yersinia massiliensis CCUG 53443": 155,
    "Yersinia mollaretii ATCC 43969": 156,
    "Yersinia pestis A1122": 157,
    "Yersinia proxima": 158,
    "Yersinia pseudotuberculosis IP 32953": 159,
    "Yersinia rochesterensis": 160,
    "Yersinia rohdei": 161,
    "Yersinia ruckeri": 162,
    "Yokenella regensburgei": 163,
}

# Dictionary mapping each organism id to respective organism name
ID2ORGANISM = {v: k for k, v in ORGANISM2ID.items()}

# Type alias for amino acid to codon mapping
AMINO2CODON_TYPE = Dict[str, Tuple[List[str], List[float]]]

# Constants for the number of organisms and sequence lengths
NUM_ORGANISMS = 164
MAX_LEN = 2048
MAX_AMINO_ACIDS = MAX_LEN - 2  # Without special tokens [CLS] and [SEP]
STOP_SYMBOL = "_"


@dataclass
class DNASequencePrediction:
    """
    A class to hold the output of the DNA sequence prediction.

    Attributes:
        organism (str): Name of the organism used for prediction.
        protein (str): Input protein sequence for which DNA sequence is predicted.
        processed_input (str): Processed input sequence (merged protein and DNA).
        predicted_dna (str): Predicted DNA sequence.
    """

    organism: str
    protein: str
    processed_input: str
    predicted_dna: str


class IterableData(torch.utils.data.IterableDataset):
    """
    Defines the logic for iterable datasets (working over streams of
    data) in parallel multi-processing environments, e.g., multi-GPU.

    Args:
        dist_env (Optional[str]): The distribution environment identifier
        (e.g., "slurm").

    Credit: Guillaume Filion
    """

    def __init__(self, dist_env: Optional[str] = None):
        super().__init__()
        if dist_env is None:
            self.world_size_handle, self.rank_handle = ("WORLD_SIZE", "LOCAL_RANK")
        else:
            self.world_size_handle, self.rank_handle = {
                "slurm": ("SLURM_NTASKS", "SLURM_PROCID")
            }.get(dist_env, ("WORLD_SIZE", "LOCAL_RANK"))

    @property
    def iterator(self) -> Iterator:
        """Define the stream logic for the dataset. Implement in subclasses."""
        raise NotImplementedError

    def __iter__(self) -> Iterator:
        """
        Create an iterator for the dataset, handling multi-processing contexts.

        Returns:
            Iterator: The iterator for the dataset.
        """
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            return self.iterator

        # In multi-processing context, use 'os.environ' to
        # find global worker rank. Then use 'islice' to allocate
        # the items of the stream to the workers.
        world_size = int(os.environ.get(self.world_size_handle, "1"))
        global_rank = int(os.environ.get(self.rank_handle, "0"))
        local_rank = worker_info.id
        local_num_workers = worker_info.num_workers

        # Assume that each process has the same number of local workers.
        worker_rk = global_rank * local_num_workers + local_rank
        worker_nb = world_size * local_num_workers
        return itertools.islice(self.iterator, worker_rk, None, worker_nb)


class IterableJSONData(IterableData):
    """
    Iterate over the lines of a JSON file and uncompress if needed.

    Args:
        data_path (str): The path to the JSON data file.
        train (bool): Flag indicating if the dataset is for training.
        **kwargs: Additional keyword arguments for the base class.
    """

    def __init__(self, data_path: str, train: bool = True, **kwargs):
        super().__init__(**kwargs)
        self.data_path = data_path
        self.train = train
        with open(os.path.join(self.data_path, "finetune_set.json"), "r") as f:
            self.records = [json.loads(line) for line in f]

    def __len__(self):
        return len(self.records)

    @property
    def iterator(self) -> Iterator:
        """Define the stream logic for the dataset."""
        for record in self.records:
            yield record


class ConfigManager(ABC):
    """
    Abstract base class for managing configuration settings.
    """
    _config: Dict[str, Any]

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        if exc_type is not None:
            print(f"Exception occurred: {exc_type}, {exc_value}, {traceback}")
        self.reset_config()

    @abstractmethod
    def reset_config(self) -> None:
        """Reset the configuration to default values."""
        pass

    def get(self, key: str) -> Any:
        """
        Get the value of a configuration key.

        Args:
            key (str): The key to retrieve the value for.

        Returns:
            Any: The value of the configuration key.
        """
        return self._config.get(key)

    def set(self, key: str, value: Any) -> None:
        """
        Set the value of a configuration key.

        Args:
            key (str): The key to set the value for.
            value (Any): The value to set for the key.
        """
        self.validate_inputs(key, value)
        self._config[key] = value

    def update(self, config_dict: dict) -> None:
        """
        Update the configuration with a dictionary of key-value pairs after validating them.

        Args:
            config_dict (dict): A dictionary of key-value pairs to update the configuration.
        """
        for key, value in config_dict.items():
            self.validate_inputs(key, value)
        self._config.update(config_dict)

    @abstractmethod
    def validate_inputs(self, key: str, value: Any) -> None:
        """Validate the inputs for the configuration."""
        pass


class ProteinConfig(ConfigManager):
    """
    A class to manage configuration settings for protein sequences.

    This class ensures that the configuration is a singleton.
    It provides methods to get, set, and update configuration values.

    Attributes:
        _instance (Optional[ConfigManager]): The singleton instance of the ConfigManager.
        _config (Dict[str, Any]): The configuration dictionary.
    """

    _instance = None

    def __new__(cls):
        """
        Create a new instance of the ProteinConfig class.

        Returns:
            ProteinConfig: The singleton instance of the ProteinConfig.
        """
        if cls._instance is None:
            cls._instance = super(ProteinConfig, cls).__new__(cls)
            cls._instance.reset_config()
        return cls._instance

    def validate_inputs(self, key: str, value: Any) -> None:
        """
        Validate the inputs for the configuration.

        Args:
            key (str): The key to validate.
            value (Any): The value to validate.

        Raises:
            ValueError: If the value is invalid.
            TypeError: If the value is of the wrong type.
        """
        if key == "ambiguous_aminoacid_behavior":
            if value not in [
                "raise_error",
                "standardize_deterministic",
                "standardize_random",
            ]:
                raise ValueError(
                    f"Invalid value for ambiguous_aminoacid_behavior: {value}."
                )
        elif key == "ambiguous_aminoacid_map_override":
            if not isinstance(value, dict):
                raise TypeError(
                    f"Invalid type for ambiguous_aminoacid_map_override: {value}."
                )
            for ambiguous_aminoacid, aminoacids in value.items():
                if not isinstance(aminoacids, list):
                    raise TypeError(f"Invalid type for aminoacids: {aminoacids}.")
                if not aminoacids:
                    raise ValueError(
                        f"Override for aminoacid '{ambiguous_aminoacid}' cannot be empty list."
                    )
                if ambiguous_aminoacid not in AMBIGUOUS_AMINOACID_MAP:
                    raise ValueError(
                        f"Invalid amino acid in ambiguous_aminoacid_map_override: {ambiguous_aminoacid}"
                    )
        else:
            raise ValueError(f"Invalid configuration key: {key}")

    def reset_config(self) -> None:
        """
        Reset the configuration to the default values.
        """
        self._config = {
            "ambiguous_aminoacid_behavior": "standardize_random",
            "ambiguous_aminoacid_map_override": {},
        }


def load_python_object_from_disk(file_path: str) -> Any:
    """
    Load a Pickle object from disk and return it as a Python object.

    Args:
        file_path (str): The path to the Pickle file.

    Returns:
        Any: The loaded Python object.
    """
    with open(file_path, "rb") as file:
        return pickle.load(file)


def save_python_object_to_disk(input_object: Any, file_path: str) -> None:
    """
    Save a Python object to disk using Pickle.

    Args:
        input_object (Any): The Python object to save.
        file_path (str): The path where the object will be saved.
    """
    with open(file_path, "wb") as file:
        pickle.dump(input_object, file)


def find_pattern_in_fasta(keyword: str, text: str) -> str:
    """
    Find a specific keyword pattern in text. Helpful for identifying parts
    of a FASTA sequence.

    Args:
        keyword (str): The keyword pattern to search for.
        text (str): The text to search within.

    Returns:
        str: The found pattern or an empty string if not found.
    """
    # Search for the keyword pattern in the text using regex
    result = re.search(keyword + r"=(.*?)]", text)
    return result.group(1) if result else ""


def get_organism2id_dict(organism_reference: str) -> Dict[str, int]:
    """
    Return a dictionary mapping each organism in training data to an index
    used for training.

    Args:
        organism_reference (str): Path to a CSV file containing a list of
            all organisms. The format of the CSV file should be as follows:

                0,Escherichia coli
                1,Homo sapiens
                2,Mus musculus

    Returns:
        Dict[str, int]: Dictionary mapping organism names to their respective indices.
    """
    # Read the CSV file and create a dictionary mapping organisms to their indices
    organisms = pd.read_csv(organism_reference, index_col=0, header=None)
    organism2id = {organisms.iloc[i].values[0]: i for i in organisms.index}

    return organism2id


def get_taxonomy_id(
    taxonomy_reference: str, organism: Optional[str] = None, return_dict: bool = False
) -> Any:
    """
    Return the taxonomy id of a given organism using a reference file.
    Optionally, return the whole dictionary instead if return_dict is True.

    Args:
        taxonomy_reference (str): Path to the taxonomy reference file.
        organism (Optional[str]): The name of the organism to look up.
        return_dict (bool): Whether to return the entire dictionary.

    Returns:
        Any: The taxonomy id of the organism or the entire dictionary.
    """
    # Load the organism-to-taxonomy mapping from a Pickle file
    organism2taxonomy = load_python_object_from_disk(taxonomy_reference)

    if return_dict:
        return dict(sorted(organism2taxonomy.items()))

    return organism2taxonomy[organism]


def sort_amino2codon_skeleton(amino2codon: Dict[str, Any]) -> Dict[str, Any]:
    """
    Sort the amino2codon dictionary alphabetically by amino acid and by codon name.

    Args:
        amino2codon (Dict[str, Any]): The amino2codon dictionary to sort.

    Returns:
        Dict[str, Any]: The sorted amino2codon dictionary.
    """
    # Sort the dictionary by amino acid and then by codon name
    amino2codon = dict(sorted(amino2codon.items()))
    amino2codon = {
        amino: (
            [codon for codon, _ in sorted(zip(codons, frequencies))],
            [freq for _, freq in sorted(zip(codons, frequencies))],
        )
        for amino, (codons, frequencies) in amino2codon.items()
    }

    return amino2codon


def load_pkl_from_url(url: str) -> Any:
    """
    Download a Pickle file from a URL and return the loaded object.

    Args:
        url (str): The URL to download the Pickle file from.

    Returns:
        Any: The loaded Python object from the Pickle file.
    """
    response = requests.get(url)
    response.raise_for_status()  # Ensure the request was successful

    # Load the Pickle object from the response content
    return pickle.loads(response.content)