File size: 63,384 Bytes
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6049bfc
ae56c94
 
 
 
6049bfc
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
e67a8f9
6049bfc
e67a8f9
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
6049bfc
 
ae56c94
 
 
6049bfc
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6049bfc
 
ae56c94
 
 
6049bfc
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67a8f9
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67a8f9
 
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
c5352e6
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67a8f9
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67a8f9
 
ae56c94
e67a8f9
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d2dc0
 
 
 
 
 
 
 
ae56c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
import streamlit as st
import torch
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from transformers import AutoTokenizer, BigBirdForMaskedLM
from huggingface_hub import hf_hub_download
from datasets import load_dataset
import time
import threading
from typing import Dict, Optional, Tuple
import warnings
warnings.filterwarnings("ignore")

# Import CodonTransformer modules
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from CodonTransformer.CodonPrediction import (
    predict_dna_sequence,
    load_model
)
from CodonTransformer.CodonEvaluation import (
    get_GC_content,
    calculate_tAI,
    get_ecoli_tai_weights,
    scan_for_restriction_sites,
    count_negative_cis_elements,
    calculate_homopolymer_runs
)
from CAI import CAI, relative_adaptiveness
from CodonTransformer.CodonUtils import get_organism2id_dict
import json

# Try to import post-processing features
try:
    from CodonTransformer.CodonPostProcessing import (
        polish_sequence_with_dnachisel,
        DNACHISEL_AVAILABLE
    )
    POST_PROCESSING_AVAILABLE = True
except ImportError:
    POST_PROCESSING_AVAILABLE = False
    DNACHISEL_AVAILABLE = False

# Page configuration
st.set_page_config(
    page_title="CodonTransformer GUI",
    page_icon="🧬",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Initialize session state
if 'model' not in st.session_state:
    st.session_state.model = None
if 'tokenizer' not in st.session_state:
    st.session_state.tokenizer = None
if 'device' not in st.session_state:
    st.session_state.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if 'optimization_running' not in st.session_state:
    st.session_state.optimization_running = False
if 'results' not in st.session_state:
    st.session_state.results = None
if 'post_processed_results' not in st.session_state:
    st.session_state.post_processed_results = None
if 'cai_weights' not in st.session_state:
    st.session_state.cai_weights = None
if 'tai_weights' not in st.session_state:
    st.session_state.tai_weights = None

def get_organism_tai_weights(organism: str) -> Dict[str, float]:
    """Get organism-specific tAI weights from pre-calculated data"""
    try:
        # Load organism-specific tAI weights
        weights_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'organism_tai_weights.json')
        with open(weights_file, 'r') as f:
            all_weights = json.load(f)

        if organism in all_weights:
            return all_weights[organism]
        else:
            # Fallback to E. coli if organism not found
            st.warning(f"tAI weights for {organism} not found, using E. coli weights")
            return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
    except Exception as e:
        st.error(f"Error loading organism-specific tAI weights: {e}")
        return get_ecoli_tai_weights()

def load_model_and_tokenizer():
    """Load the model and tokenizer with progress tracking"""
    if st.session_state.model is None or st.session_state.tokenizer is None:
        with st.spinner("Loading CodonTransformer model... This may take a few minutes."):
            progress_bar = st.progress(0)
            status_text = st.empty()

            status_text.text("Loading tokenizer...")
            progress_bar.progress(25)
            st.session_state.tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")

            status_text.text("Loading fine-tuned model from Hugging Face...")
            progress_bar.progress(50)
            try:
                from huggingface_hub import hf_hub_download
                hf_token = os.environ.get("HF_TOKEN")
                status_text.text("⬇️ Downloading model from saketh11/ColiFormer...")
                model_path = hf_hub_download(
                    repo_id="saketh11/ColiFormer",
                    filename="balanced_alm_finetune.ckpt",
                    cache_dir="./hf_cache",
                    token=hf_token
                )
                status_text.text("πŸ”„ Loading downloaded model...")
                st.session_state.model = load_model(
                    model_path=model_path,
                    device=st.session_state.device,
                    attention_type="original_full"
                )
                status_text.text("βœ… Fine-tuned model loaded from Hugging Face (6.2% better CAI)")
                st.session_state.model_type = "fine_tuned_hf"
            except Exception as e:
                status_text.text(f"⚠️ Failed to load from Hugging Face: {str(e)[:50]}...")
                status_text.text("Loading base model as fallback...")
                st.session_state.model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
                if isinstance(st.session_state.model, torch.nn.Module):
                    st.session_state.model = st.session_state.model.to(st.session_state.device)
                else:
                    st.warning("Fallback model loaded is not a PyTorch module. Cannot move to device.")
                st.session_state.model_type = "base"

            progress_bar.progress(100)
            time.sleep(0.5)

            status_text.empty()
            progress_bar.empty()

@st.cache_data
def download_reference_data():
    """Download and cache reference data from Hugging Face"""
    try:
        from huggingface_hub import hf_hub_download
        hf_token = os.environ.get("HF_TOKEN")
        file_path = hf_hub_download(
            repo_id="saketh11/ColiFormer-Data",
            filename="ecoli_processed_genes.csv",
            repo_type="dataset",
            token=hf_token
        )
        df = pd.read_csv(file_path)
        return df['dna_sequence'].tolist()
    except Exception as e:
        st.warning(f"Could not download reference data from Hugging Face: {e}")
        return [
            "ATGGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGC",
            "ATGAAATTTATTTATTATTATAAATTTATTTATTATTATAAATTTATTTAT",
            "ATGGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGT"
        ]

@st.cache_data
def download_tai_weights():
    """Download and cache tAI weights from Hugging Face"""
    try:
        from huggingface_hub import hf_hub_download
        hf_token = os.environ.get("HF_TOKEN")
        file_path = hf_hub_download(
            repo_id="saketh11/ColiFormer-Data",
            filename="organism_tai_weights.json",
            repo_type="dataset",
            token=hf_token
        )
        with open(file_path, 'r') as f:
            all_weights = json.load(f)
        return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
    except Exception as e:
        st.warning(f"Could not download tAI weights from Hugging Face: {e}")
        return get_ecoli_tai_weights()

def load_reference_data(organism: str = "Escherichia coli general"):
    """Load reference sequences and tAI weights for E. coli"""
    if 'cai_weights' not in st.session_state or st.session_state['cai_weights'] is None:
        try:
            # Download reference sequences from Hugging Face
            with st.spinner("πŸ“₯ Downloading E. coli reference sequences from Hugging Face..."):
                ref_sequences = download_reference_data()
                st.session_state['cai_weights'] = relative_adaptiveness(sequences=ref_sequences)
                if len(ref_sequences) > 100:  # If we got the full dataset
                    st.success(f"βœ… Downloaded {len(ref_sequences):,} E. coli reference sequences for CAI calculation")
                else:
                    st.info(f"⚠️ Using {len(ref_sequences)} minimal reference sequences (full dataset unavailable)")
        except Exception as e:
            st.error(f"Error loading E. coli reference data: {e}")
            st.session_state['cai_weights'] = {}
    # tAI weights (E. coli only)
    if 'tai_weights' not in st.session_state or st.session_state['tai_weights'] is None:
        try:
            with st.spinner("πŸ“₯ Downloading E. coli tAI weights from Hugging Face..."):
                st.session_state['tai_weights'] = download_tai_weights()
                st.success("βœ… Downloaded E. coli tAI weights")
        except Exception as e:
            st.error(f"Error loading E. coli tAI weights: {e}")
            st.session_state['tai_weights'] = {}

def validate_sequence(sequence: str) -> Tuple[bool, str, str, str]:
    """Validate sequence and return status, message, sequence type, and possibly fixed sequence"""
    if not sequence:
        return False, "Sequence cannot be empty", "unknown", sequence

    # Remove whitespace and convert to uppercase
    sequence = sequence.strip().upper()

    # Check if it's a DNA sequence
    dna_chars = set("ATGC")
    protein_chars = set("ACDEFGHIKLMNPQRSTVWY*_")

    sequence_chars = set(sequence)

    # If all characters are DNA nucleotides, treat as DNA
    if sequence_chars.issubset(dna_chars):
        if len(sequence) < 3:
            return False, "DNA sequence must be at least 3 nucleotides long", "dna", sequence
        
        # Auto-fix DNA sequences not divisible by 3
        if len(sequence) % 3 != 0:
            remainder = len(sequence) % 3
            fixed_sequence = sequence[:-remainder]
            message = f"Valid DNA sequence (auto-fixed: removed {remainder} nucleotides from end to make divisible by 3)"
        else:
            fixed_sequence = sequence
            message = "Valid DNA sequence"
        
        return True, message, "dna", fixed_sequence

    # If contains protein-specific amino acids, treat as protein
    elif sequence_chars.issubset(protein_chars):
        if len(sequence) < 3:
            return False, "Protein sequence must be at least 3 amino acids long", "protein", sequence
        return True, "Valid protein sequence", "protein", sequence

    # Invalid characters
    else:
        invalid_chars = sequence_chars - (dna_chars | protein_chars)
        return False, f"Invalid characters found: {', '.join(invalid_chars)}", "unknown", sequence

def calculate_input_metrics(sequence: str, organism: str, sequence_type: str) -> Dict:
    """Calculate metrics for the input sequence using E. coli reference only"""
    # Load reference data (E. coli only)
    load_reference_data()
    if sequence_type == "dna":
        dna_sequence = sequence.upper()
        metrics = {
            'length': len(dna_sequence) // 3,
            'gc_content': get_GC_content(dna_sequence),
            'baseline_dna': dna_sequence,
            'sequence_type': 'dna'
        }
        try:
            if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
                metrics['cai'] = CAI(dna_sequence, weights=st.session_state['cai_weights'])
            else:
                metrics['cai'] = None
        except:
            metrics['cai'] = None
        try:
            if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
                metrics['tai'] = calculate_tAI(dna_sequence, st.session_state['tai_weights'])
            else:
                metrics['tai'] = None
        except:
            metrics['tai'] = None
    else:
        most_frequent_codons = {
            'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
            'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
            'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
            'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
            '*': 'TAA', '_': 'TAA'
        }
        baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in sequence])
        metrics = {
            'length': len(sequence),
            'gc_content': get_GC_content(baseline_dna),
            'baseline_dna': baseline_dna,
            'sequence_type': 'protein'
        }
        try:
            if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
                metrics['cai'] = CAI(baseline_dna, weights=st.session_state['cai_weights'])
            else:
                metrics['cai'] = None
        except:
            metrics['cai'] = None
        try:
            if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
                metrics['tai'] = calculate_tAI(baseline_dna, st.session_state['tai_weights'])
            else:
                metrics['tai'] = None
        except:
            metrics['tai'] = None
    try:
        analysis_dna = metrics['baseline_dna']
        # scan_for_restriction_sites returns an int, not a list, so no need for len()
        metrics['restriction_sites'] = scan_for_restriction_sites(analysis_dna)
        metrics['negative_cis_elements'] = count_negative_cis_elements(analysis_dna)
        metrics['homopolymer_runs'] = calculate_homopolymer_runs(analysis_dna)
    except:
        metrics['restriction_sites'] = 0
        metrics['negative_cis_elements'] = 0
        metrics['homopolymer_runs'] = 0
    return metrics

def translate_dna_to_protein(dna_sequence: str) -> str:
    """Translate DNA sequence to protein sequence"""
    codon_table = {
        'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
        'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S',
        'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*',
        'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W',
        'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L',
        'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
        'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
        'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
        'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M',
        'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
        'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K',
        'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R',
        'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
        'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
        'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E',
        'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G'
    }

    protein = ""
    for i in range(0, len(dna_sequence), 3):
        codon = dna_sequence[i:i+3].upper()
        if len(codon) == 3:
            aa = codon_table.get(codon, 'X')
            if aa == '*':  # Stop codon
                break
            protein += aa

    return protein

def create_gc_content_plot(sequence: str, window_size: int = 50) -> go.Figure:
    """Create a sliding window GC content plot"""
    if len(sequence) < window_size:
        window_size = len(sequence) // 3

    positions = []
    gc_values = []

    for i in range(0, len(sequence) - window_size + 1, 3):  # Step by codons
        window = sequence[i:i + window_size]
        gc_content = get_GC_content(window)
        positions.append(i // 3)  # Position in codons
        gc_values.append(gc_content)

    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=positions,
        y=gc_values,
        mode='lines',
        name='GC Content',
        line=dict(color='blue', width=2)
    ))

    # Add target range
    fig.add_hline(y=45, line_dash="dash", line_color="red",
                  annotation_text="Min Target (45%)")
    fig.add_hline(y=55, line_dash="dash", line_color="red",
                  annotation_text="Max Target (55%)")

    fig.update_layout(
        title=f'GC Content (sliding window: {window_size} bp)',
        xaxis_title='Position (codons)',
        yaxis_title='GC Content (%)',
        height=300
    )

    return fig

def create_gc_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
    """Create a comparison chart for GC Content"""
    fig = go.Figure()
    fig.add_trace(go.Bar(
        name='Before Optimization',
        x=['GC Content (%)'],
        y=[before_metrics.get('gc_content', 0)],
        marker_color='lightblue',
        text=[f"{before_metrics.get('gc_content', 0):.1f}%"],
        textposition='auto'
    ))
    fig.add_trace(go.Bar(
        name='After Optimization',
        x=['GC Content (%)'],
        y=[after_metrics.get('gc_content', 0)],
        marker_color='darkblue',
        text=[f"{after_metrics.get('gc_content', 0):.1f}%"],
        textposition='auto'
    ))
    fig.update_layout(
        title='GC Content Comparison: Before vs After',
        xaxis_title='Metric',
        yaxis_title='Value (%)',
        barmode='group',
        height=300
    )
    return fig

def create_expression_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
    """Create a comparison chart for expression metrics (CAI, tAI)"""
    metrics_names = ['CAI', 'tAI']
    before_values = [
        before_metrics.get('cai', 0) if before_metrics.get('cai') else 0,
        before_metrics.get('tai', 0) if before_metrics.get('tai') else 0
    ]
    after_values = [
        after_metrics.get('cai', 0) if after_metrics.get('cai') else 0,
        after_metrics.get('tai', 0) if after_metrics.get('tai') else 0
    ]

    fig = go.Figure()
    fig.add_trace(go.Bar(
        name='Before Optimization',
        x=metrics_names,
        y=before_values,
        marker_color='lightblue',
        text=[f"{v:.3f}" for v in before_values],
        textposition='auto'
    ))
    fig.add_trace(go.Bar(
        name='After Optimization',
        x=metrics_names,
        y=after_values,
        marker_color='darkblue',
        text=[f"{v:.3f}" for v in after_values],
        textposition='auto'
    ))
    fig.update_layout(
        title='Expression Metrics Comparison: Before vs After',
        xaxis_title='Metric',
        yaxis_title='Value',
        barmode='group',
        height=300
    )
    return fig

def smart_codon_replacement(dna_sequence: str, target_gc_min: float = 0.45, target_gc_max: float = 0.55, max_iterations: int = 100) -> str:
    """Smart codon replacement to optimize GC content while maximizing CAI"""

    # Codon alternatives with their GC content
    codon_alternatives = {
        # Serine: high GC options
        'TCT': ['TCG', 'TCC', 'TCA', 'AGT', 'AGC'],  # 33% -> 67%, 67%, 33%, 33%, 67%
        'TCA': ['TCG', 'TCC', 'TCT', 'AGT', 'AGC'],
        'AGT': ['TCG', 'TCC', 'TCT', 'TCA', 'AGC'],

        # Leucine: various GC options
        'TTA': ['TTG', 'CTT', 'CTC', 'CTA', 'CTG'],  # 0% -> 33%, 33%, 67%, 33%, 67%
        'TTG': ['TTA', 'CTT', 'CTC', 'CTA', 'CTG'],
        'CTT': ['CTG', 'CTC', 'TTA', 'TTG', 'CTA'],
        'CTA': ['CTG', 'CTC', 'CTT', 'TTA', 'TTG'],

        # Arginine: various GC options
        'AGA': ['CGT', 'CGC', 'CGA', 'CGG', 'AGG'],  # 33% -> 67%, 100%, 67%, 100%, 67%
        'AGG': ['CGT', 'CGC', 'CGA', 'CGG', 'AGA'],
        'CGT': ['CGC', 'CGG', 'CGA', 'AGA', 'AGG'],
        'CGA': ['CGC', 'CGG', 'CGT', 'AGA', 'AGG'],

        # Proline
        'CCT': ['CCG', 'CCC', 'CCA'],  # 67% -> 100%, 100%, 67%
        'CCA': ['CCG', 'CCC', 'CCT'],

        # Threonine
        'ACT': ['ACG', 'ACC', 'ACA'],  # 33% -> 67%, 67%, 33%
        'ACA': ['ACG', 'ACC', 'ACT'],

        # Alanine
        'GCT': ['GCG', 'GCC', 'GCA'],  # 67% -> 100%, 100%, 67%
        'GCA': ['GCG', 'GCC', 'GCT'],

        # Glycine
        'GGT': ['GGG', 'GGC', 'GGA'],  # 67% -> 100%, 100%, 67%
        'GGA': ['GGG', 'GGC', 'GGT'],

        # Valine
        'GTT': ['GTG', 'GTC', 'GTA'],  # 67% -> 100%, 100%, 67%
        'GTA': ['GTG', 'GTC', 'GTT'],
    }

    def get_codon_gc(codon):
        return (codon.count('G') + codon.count('C')) / 3.0

    current_sequence = dna_sequence.upper()
    current_gc = get_GC_content(current_sequence)

    if target_gc_min <= current_gc <= target_gc_max:
        return current_sequence

    codons = [current_sequence[i:i+3] for i in range(0, len(current_sequence), 3)]

    for iteration in range(max_iterations):
        current_gc = get_GC_content(''.join(codons))

        if target_gc_min <= current_gc <= target_gc_max:
            break

        # Find best codon to replace
        best_improvement = 0
        best_pos = -1
        best_replacement = None

        for pos, codon in enumerate(codons):
            if codon in codon_alternatives:
                for alt_codon in codon_alternatives[codon]:
                    # Calculate GC change
                    old_gc_contrib = get_codon_gc(codon)
                    new_gc_contrib = get_codon_gc(alt_codon)
                    gc_change = new_gc_contrib - old_gc_contrib

                    # Check if this change moves us toward target
                    if current_gc < target_gc_min and gc_change > best_improvement:
                        best_improvement = gc_change
                        best_pos = pos
                        best_replacement = alt_codon
                    elif current_gc > target_gc_max and gc_change < best_improvement:
                        best_improvement = abs(gc_change)
                        best_pos = pos
                        best_replacement = alt_codon

        if best_pos >= 0:
            if isinstance(best_replacement, str):
                codons[best_pos] = best_replacement
        else:
            break  # No more improvements possible

    return ''.join(codons)

def run_optimization(protein: str, organism: str, use_post_processing: bool = False):
    """Run the optimization using the exact method from run_full_comparison.py with auto GC correction"""
    st.session_state.optimization_running = True
    st.session_state.post_processed_results = None

    try:
        # Use the exact same method that achieved best results in evaluation
        result = predict_dna_sequence(
            protein=protein,
            organism=organism,
            device=st.session_state.device,
            model=st.session_state.model,
            deterministic=True,
            match_protein=True,
        )

        # Check GC content and auto-correct if out of optimal range
        _res = result[0] if isinstance(result, list) else result
        initial_gc = get_GC_content(_res.predicted_dna)

        if initial_gc < 45.0 or initial_gc > 55.0:
            # Auto-correct GC content silently
            optimized_dna = smart_codon_replacement(_res.predicted_dna, 0.45, 0.55)
            smart_gc = get_GC_content(optimized_dna)

            if 45.0 <= smart_gc <= 55.0:
                from CodonTransformer.CodonUtils import DNASequencePrediction
                result = DNASequencePrediction(
                    organism=_res.organism,
                    protein=_res.protein,
                    processed_input=_res.processed_input,
                    predicted_dna=optimized_dna
                )
            else:
                # Fall back to constrained beam search silently
                try:
                    result = predict_dna_sequence(
                        protein=protein,
                        organism=organism,
                        device=st.session_state.device,
                        model=st.session_state.model,
                        deterministic=True,
                        match_protein=True,
                        use_constrained_search=True,
                        gc_bounds=(0.45, 0.55),
                        beam_size=20
                    )
                    _res2 = result[0] if isinstance(result, list) else result
                    final_gc = get_GC_content(_res2.predicted_dna)
                except Exception as e:
                    # If constrained search fails, use smart replacement result anyway
                    from CodonTransformer.CodonUtils import DNASequencePrediction
                    result = DNASequencePrediction(
                        organism=_res.organism,
                        protein=_res.protein,
                        processed_input=_res.processed_input,
                        predicted_dna=optimized_dna
                    )

        st.session_state.results = result

        # Post-processing if enabled
        if use_post_processing and POST_PROCESSING_AVAILABLE and result:
            try:
                _res = result[0] if isinstance(result, list) else result
                polished_sequence = polish_sequence_with_dnachisel(
                    dna_sequence=_res.predicted_dna,
                    protein_sequence=protein,
                    gc_bounds=(45.0, 55.0),
                    cai_species=organism.lower().replace(' ', '_'),
                    avoid_homopolymers_length=6
                )

                # Create enhanced result object
                from CodonTransformer.CodonUtils import DNASequencePrediction
                st.session_state.post_processed_results = DNASequencePrediction(
                    organism=_res.organism,
                    protein=_res.protein,
                    processed_input=_res.processed_input,
                    predicted_dna=polished_sequence
                )
            except Exception as e:
                st.session_state.post_processed_results = f"Post-processing error: {str(e)}"

    except Exception as e:
        st.session_state.results = f"Error: {str(e)}"

    finally:
        st.session_state.optimization_running = False

def main():
    st.title("🧬 ColiFormer")


    # Remove the performance highlights expander (details/summary block)
    # (No expander here anymore)

    # Load model
    load_model_and_tokenizer()

    # Create the main tabbed interface
    tab1, tab2, tab3, tab4 = st.tabs(["🧬 Single Optimize", "πŸ“ Batch Process", "πŸ“Š Comparative Analysis", "βš™οΈ Advanced Settings"])

    with tab1:
        single_sequence_optimization()

    with tab2:
        batch_processing_interface()

    with tab3:
        comparative_analysis_interface()

    with tab4:
        advanced_settings_interface()

def single_sequence_optimization():
    """Single sequence optimization interface - enhanced from original functionality"""
    # Sidebar configuration 
    st.sidebar.header("πŸ”§ Configuration")
    organism_options = [
        "Escherichia coli general",
        "Saccharomyces cerevisiae",
        "Homo sapiens",
        "Bacillus subtilis",
        "Pichia pastoris"
    ]
    organism = st.sidebar.selectbox("Select Target Organism", organism_options)
    load_reference_data(organism)
    with st.sidebar.expander("πŸ”§ Advanced Optimization Settings"):
        st.markdown("**Model Parameters**")
        use_deterministic = st.checkbox("Deterministic Mode", value=True, help="Use deterministic decoding for reproducible results")
        match_protein = st.checkbox("Match Protein Validation", value=True, help="Ensure DNA translates back to exact protein")
        st.markdown("**GC Content Control**")
        gc_target_min = st.slider("GC Target Min (%)", 30, 70, 45, help="Minimum GC content target")
        gc_target_max = st.slider("GC Target Max (%)", 30, 70, 55, help="Maximum GC content target")
        st.markdown("**Quality Constraints**")
        avoid_restriction_sites = st.multiselect(
            "Avoid Restriction Sites",
            ["EcoRI", "BamHI", "HindIII", "XhoI", "NotI"],
            default=["EcoRI", "BamHI"]
        )
    st.sidebar.subheader("πŸ”¬ Post-Processing")
    use_post_processing = st.sidebar.checkbox(
        "Enable DNAChisel Post-Processing",
        value=False,
        disabled=not POST_PROCESSING_AVAILABLE,
        help="Polish sequences to remove restriction sites, homopolymers, and synthesis issues"
    )
    if not POST_PROCESSING_AVAILABLE:
        st.sidebar.warning("⚠️ DNAChisel not available. Install with: pip install dnachisel")
    
    # Dataset Information
    st.sidebar.markdown("---")
    st.sidebar.markdown("### πŸ“Š Dataset Information")
    st.sidebar.markdown("""
    - **Dataset**: [ColiFormer-Data](https://huggingface.co/datasets/saketh11/ColiFormer-Data)
    - **Training**: 4,300 high-CAI E. coli sequences
    - **Reference**: 50,000+ E. coli gene sequences  
    - **Auto-download**: CAI weights & tAI coefficients
    """)
    
    # Model Information
    st.sidebar.markdown("### πŸ€– Model Information")
    st.sidebar.markdown("""
    - **Model**: [ColiFormer](https://huggingface.co/saketh11/ColiFormer)
    - **Improvement**: +6.2% CAI vs base model
    - **Architecture**: BigBird Transformer + ALM
    - **Auto-download**: From Hugging Face Hub
    """)
    col1, col2 = st.columns([1, 1])
    with col1:
        st.header("🧬 Input Sequence")
        sequence_input = st.text_area(
            "Enter Protein or DNA Sequence",
            height=300,
            placeholder="Enter protein sequence (MKWVT...) or DNA sequence (ATGGCG...)\n\nExample protein: MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTE"
        )
        analyze_btn = st.button("Analyze Sequence", type="primary")
        if sequence_input and analyze_btn:
            is_valid, message, sequence_type, fixed_sequence = validate_sequence(sequence_input)
            if is_valid:
                st.success(f"βœ… {message}")
                # Store in session state for use by Optimize Sequence
                st.session_state.sequence_clean = fixed_sequence
                st.session_state.sequence_type = sequence_type
                st.session_state.input_metrics = calculate_input_metrics(fixed_sequence, organism, sequence_type)
                st.session_state.organism = organism
            else:
                st.error(f"❌ {message}")
                if "Invalid characters" in message:
                    st.info("πŸ’‘ **Suggestion:** Remove spaces, numbers, and special characters. Use only standard amino acid letters (A-Z) for proteins or nucleotides (ATGC) for DNA.")
                elif "too long" in message:
                    st.info("πŸ’‘ **Suggestion:** Consider breaking long sequences into smaller segments for optimization.")
                elif "too short" in message:
                    st.info("πŸ’‘ **Suggestion:** Minimum length is 3 characters. Ensure your sequence is complete.")
                # Clear session state if invalid
                st.session_state.sequence_clean = None
                st.session_state.sequence_type = None
                st.session_state.input_metrics = None
                st.session_state.organism = None
        elif not sequence_input:
            st.session_state.sequence_clean = None
            st.session_state.sequence_type = None
            st.session_state.input_metrics = None
            st.session_state.organism = None

        # Always display the last analysis if it exists in session state
        if st.session_state.get('input_metrics') and st.session_state.get('sequence_type'):
            input_metrics = st.session_state.input_metrics
            sequence_type = st.session_state.sequence_type
            st.subheader("πŸ“Š Input Analysis")
            metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
            with metrics_col1:
                unit = "codons" if sequence_type == "dna" else "AA"
                length = input_metrics.get('length', 0) if input_metrics else 0
                gc_content = input_metrics.get('gc_content', 0) if input_metrics else 0
                st.metric("Length", f"{length} {unit}")
                st.metric("GC Content", f"{gc_content:.1f}%")
            with metrics_col2:
                cai_val = input_metrics.get('cai') if input_metrics else None
                if cai_val:
                    label = "CAI" if sequence_type == "dna" else "CAI (baseline)"
                    st.metric(label, f"{cai_val:.3f}")
                else:
                    st.metric("CAI", "N/A")
            with metrics_col3:
                tai_val = input_metrics.get('tai') if input_metrics else None
                if tai_val:
                    label = "tAI" if sequence_type == "dna" else "tAI (baseline)"
                    st.metric(label, f"{tai_val:.3f}")
                else:
                    st.metric("tAI", "N/A")
            st.subheader("πŸ” Sequence Quality Analysis")
            analysis_col1, analysis_col2, analysis_col3 = st.columns(3)
            with analysis_col1:
                sites_count = input_metrics.get('restriction_sites', 0) if input_metrics else 0
                color = "normal" if sites_count <= 2 else "inverse"
                st.metric("Restriction Sites", sites_count)
            with analysis_col2:
                neg_elements = input_metrics.get('negative_cis_elements', 0) if input_metrics else 0
                st.metric("Negative Elements", neg_elements)
            with analysis_col3:
                homo_runs = input_metrics.get('homopolymer_runs', 0) if input_metrics else 0
                st.metric("Homopolymer Runs", homo_runs)
            baseline_dna = input_metrics.get('baseline_dna', '') if input_metrics else ''
            if baseline_dna and len(baseline_dna) > 150:
                st.subheader("πŸ“ˆ GC Content Distribution")
                fig = create_gc_content_plot(baseline_dna)
                fig.update_layout(
                    title="Input Sequence GC Content Analysis",
                    xaxis_title="Position (codons)",
                    yaxis_title="GC Content (%)",
                    hovermode='x unified'
                )
                st.plotly_chart(fig, use_container_width=True)

    with col2:
        st.header("πŸš€ Optimization Results")
        # Enhanced optimization button
        if (
            st.session_state.get('sequence_clean')
            and st.session_state.get('sequence_type')
            and not st.session_state.optimization_running
        ):
            st.markdown("**Ready to optimize your sequence!**")
            strategy_info = st.container()
            with strategy_info:
                st.info(f"""
                **Optimization Strategy:**
                β€’ Target organism: {st.session_state.organism}
                β€’ Model: Fine-tuned CodonTransformer (89.6M parameters)
                β€’ GC target: {gc_target_min}-{gc_target_max}%
                β€’ Mode: {'Deterministic' if use_deterministic else 'Stochastic'}
                """)
            if st.button("πŸš€ Optimize Sequence", type="primary", use_container_width=True):
                st.session_state.results = None
                if st.session_state.sequence_type == "dna":
                    protein_sequence = translate_dna_to_protein(str(st.session_state.sequence_clean))
                    run_optimization(protein_sequence, str(st.session_state.organism), use_post_processing)
                else:
                    run_optimization(str(st.session_state.sequence_clean), str(st.session_state.organism), use_post_processing)

        # Enhanced progress display
        if st.session_state.optimization_running:
            st.info("πŸ”„ **Optimizing sequence with our model...**")

            # Create progress container
            progress_container = st.container()
            with progress_container:
                progress_bar = st.progress(0)
                status_text = st.empty()

                # Enhanced progress steps
                steps = [
                    "πŸ” Analyzing input sequence structure...",
                    "🧬 Loading fine-tuned CodonTransformer model...",
                    "⚑ Running optimization algorithm...",
                    "🎯 Optimizing GC content for synthesis...",
                    "βœ… Finalizing optimized sequence..."
                ]

                for i, step in enumerate(steps):
                    progress_value = int((i + 1) / len(steps) * 100)
                    progress_bar.progress(progress_value)
                    status_text.text(step)
                    time.sleep(0.8)  # Realistic timing

            progress_bar.empty()
            status_text.empty()

        # Enhanced results display
        if st.session_state.results and not st.session_state.optimization_running:
            if isinstance(st.session_state.results, str):
                st.error(f"❌ **Optimization Failed:** {st.session_state.results}")
            else:
                display_optimization_results(
                    st.session_state.results, 
                    st.session_state.get('organism', organism), 
                    st.session_state.get('sequence_clean', ''), 
                    st.session_state.get('sequence_type', 'protein'), 
                    st.session_state.get('input_metrics', {})
                )

def display_optimization_results(result, organism, original_sequence, sequence_type, input_metrics):
    """Enhanced results display with publication-quality visualizations"""

    # Calculate optimized metrics
    optimized_metrics = {
        'gc_content': get_GC_content(result.predicted_dna),
        'length': len(result.predicted_dna)
    }

    # Calculate CAI and tAI
    try:
        if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
            optimized_metrics['cai'] = CAI(result.predicted_dna, weights=st.session_state['cai_weights'])
        else:
            optimized_metrics['cai'] = None
    except:
        optimized_metrics['cai'] = None

    try:
        if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
            optimized_metrics['tai'] = calculate_tAI(result.predicted_dna, st.session_state['tai_weights'])
        else:
            optimized_metrics['tai'] = None
    except:
        optimized_metrics['tai'] = None

    # Success header
    st.success("βœ… **Optimization Complete!** ")

    # Key improvements summary
    st.subheader("🎯 Optimization Improvements")
    imp_col1, imp_col2, imp_col3 = st.columns(3)

    if input_metrics is not None:
        with imp_col1:
            if input_metrics.get('gc_content') and optimized_metrics.get('gc_content'):
                gc_change = optimized_metrics['gc_content'] - input_metrics['gc_content']
                st.metric("GC Content", f"{optimized_metrics['gc_content']:.1f}%", delta=f"{gc_change:+.1f}%")

        with imp_col2:
            if input_metrics.get('cai') and optimized_metrics.get('cai'):
                cai_change = optimized_metrics['cai'] - input_metrics['cai']
                st.metric("CAI Score", f"{optimized_metrics['cai']:.3f}", delta=f"{cai_change:+.3f}")

        with imp_col3:
            if input_metrics.get('tai') and optimized_metrics.get('tai'):
                tai_change = optimized_metrics['tai'] - input_metrics['tai']
                st.metric("tAI Score", f"{optimized_metrics['tai']:.3f}", delta=f"{tai_change:+.3f}")

    # Optimized DNA sequence display
    st.subheader("🧬 Optimized DNA Sequence")
    # Calculate dynamic height for the text area
    estimated_chars_per_line = 100 # Rough estimate for wide layout
    line_height_px = 20 # Rough estimate for font size
    min_height_px = 150
    num_lines = (len(result.predicted_dna) // estimated_chars_per_line) + 1
    dynamic_height = max(min_height_px, num_lines * line_height_px)

    st.text_area("Optimized DNA Sequence", result.predicted_dna, height=dynamic_height)

    # Enhanced download and export options
    col1, col2, col3 = st.columns(3)
    with col1:
        st.download_button(
            label="πŸ“₯ Download DNA (FASTA)",
            data=f">Optimized_{organism.replace(' ', '_')}\n{result.predicted_dna}",
            file_name=f"optimized_sequence_{organism.replace(' ', '_')}.fasta",
            mime="text/plain"
        )

    with col2:
        # Create CSV report
        csv_data = f"Metric,Original,Optimized,Improvement\n"
        csv_data += f"GC Content (%),{input_metrics['gc_content']:.1f},{optimized_metrics['gc_content']:.1f},{optimized_metrics['gc_content'] - input_metrics['gc_content']:+.1f}\n"
        if input_metrics['cai'] and optimized_metrics['cai']:
            csv_data += f"CAI Score,{input_metrics['cai']:.3f},{optimized_metrics['cai']:.3f},{optimized_metrics['cai'] - input_metrics['cai']:+.3f}\n"
        if input_metrics['tai'] and optimized_metrics['tai']:
            csv_data += f"tAI Score,{input_metrics['tai']:.3f},{optimized_metrics['tai']:.3f},{optimized_metrics['tai'] - input_metrics['tai']:+.3f}\n"

        st.download_button(
            label="πŸ“Š Download Metrics (CSV)",
            data=csv_data,
            file_name=f"optimization_metrics_{organism.replace(' ', '_')}.csv",
            mime="text/csv"
        )

    with col3:
        st.button("πŸ“„ Generate PDF Report", help="Coming soon: Publication-quality PDF report")

    # Enhanced comparison visualizations
    st.subheader("πŸ“Š Before vs After Analysis")

    # Create enhanced comparison charts
    create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_sequence, result.predicted_dna, sequence_type)

def create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_dna, optimized_dna, sequence_type):
    """Create publication-quality comparison visualizations"""
    if input_metrics is None or optimized_metrics is None:
        st.info("No comparison data available.")
        return

    # GC Content comparison
    gc_comp_fig = create_gc_comparison_chart(input_metrics, optimized_metrics)
    gc_comp_fig.update_layout(
        title="GC Content Optimization Results",
        font=dict(size=12),
        height=350
    )
    st.plotly_chart(gc_comp_fig, use_container_width=True)

    # Expression metrics comparison
    if input_metrics.get('cai') and optimized_metrics.get('cai'):
        expr_comp_fig = create_expression_comparison_chart(input_metrics, optimized_metrics)
        expr_comp_fig.update_layout(
            title="Expression Potential Improvement",
            font=dict(size=12),
            height=350
        )
        st.plotly_chart(expr_comp_fig, use_container_width=True)

    # Side-by-side GC distribution analysis
    st.subheader("πŸ“ˆ GC Content Distribution Analysis")
    col1, col2 = st.columns(2)

    with col1:
        st.write(f"**{'Original DNA' if sequence_type == 'dna' else 'Baseline (Most Frequent Codons)'}**")
        baseline_dna = input_metrics.get('baseline_dna') if input_metrics else None
        plot_dna = baseline_dna if baseline_dna is not None else original_dna
        if plot_dna is not None and isinstance(plot_dna, str) and len(plot_dna) > 150:
            fig_before = create_gc_content_plot(plot_dna)
            fig_before.update_layout(title="Before Optimization", height=300)
            st.plotly_chart(fig_before, use_container_width=True)
        else:
            st.info("Sequence too short for sliding window analysis")

    with col2:
        st.write("** Model Optimized**")
        if optimized_dna is not None and isinstance(optimized_dna, str) and len(optimized_dna) > 150:
            fig_after = create_gc_content_plot(optimized_dna)
            fig_after.update_layout(title="After Optimization", height=300)
            st.plotly_chart(fig_after, use_container_width=True)
        else:
            st.info("Sequence too short for sliding window analysis")

def batch_processing_interface():
    """Batch processing interface for multiple sequences"""
    st.header("πŸ“ Batch Processing")
    st.markdown("**Process multiple protein sequences simultaneously with optimization**")

    # File upload section
    st.subheader("πŸ“€ Upload Sequences")
    uploaded_file = st.file_uploader(
        "Choose a file with multiple sequences",
        type=['csv', 'xlsx', 'fasta', 'txt', 'fa'],
        help="Upload CSV, Excel (XLSX, with 'sequence' column) or FASTA format files"
    )

    if uploaded_file:
        st.success(f"βœ… File uploaded: {uploaded_file.name}")

        # Process uploaded file
        try:
            def find_column(df, target):
                # Find column name case-insensitively and ignoring spaces
                for col in df.columns:
                    if col.strip().lower() == target:
                        return col
                return None

            if uploaded_file.name.endswith('.csv'):
                df = pd.read_csv(uploaded_file)
                seq_col = find_column(df, 'sequence')
                name_col = find_column(df, 'name')
                if seq_col:
                    sequences = df[seq_col].tolist()
                    if name_col:
                        names = df[name_col].tolist()
                    else:
                        names = [f"Sequence_{i+1}" for i in range(len(sequences))]
                else:
                    st.error("CSV file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
                    return
            elif uploaded_file.name.endswith('.xlsx'):
                df = pd.read_excel(uploaded_file)
                seq_col = find_column(df, 'sequence')
                name_col = find_column(df, 'name')
                if seq_col:
                    sequences = df[seq_col].tolist()
                    if name_col:
                        names = df[name_col].tolist()
                    else:
                        names = [f"Sequence_{i+1}" for i in range(len(sequences))]
                else:
                    st.error("Excel file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
                    return
            else:
                # Handle FASTA format
                content = uploaded_file.read().decode('utf-8')
                sequences, names = parse_fasta_content(content)

            st.info(f"πŸ“Š Found {len(sequences)} sequences ready for optimization")

            # Batch configuration
            col1, col2 = st.columns(2)
            with col1:
                batch_organism = st.selectbox("Target Organism", [
                    "Escherichia coli general", "Saccharomyces cerevisiae", "Homo sapiens"
                ])
            with col2:
                max_sequences = st.number_input("Max sequences to process", 1, len(sequences), min(10, len(sequences)))

            # Start batch processing
            if st.button("πŸš€ Start Batch Optimization", type="primary"):
                run_batch_optimization(sequences[:max_sequences], names[:max_sequences], batch_organism)

        except Exception as e:
            st.error(f"Error processing file: {str(e)}")

    # Batch results display
    if 'batch_results' in st.session_state and st.session_state.batch_results:
        display_batch_results()

def parse_fasta_content(content):
    """Parse FASTA format content"""
    sequences = []
    names = []
    current_seq = ""
    current_name = ""

    for line in content.split('\n'):
        line = line.strip()
        if line.startswith('>'):
            if current_seq:
                sequences.append(current_seq)
                names.append(current_name)
            current_name = line[1:] if len(line) > 1 else f"Sequence_{len(sequences)+1}"
            current_seq = ""
        else:
            current_seq += line

    if current_seq:
        sequences.append(current_seq)
        names.append(current_name)

    return sequences, names

def run_batch_optimization(sequences, names, organism):
    """Run batch optimization with progress tracking"""
    st.session_state.batch_results = []
    st.session_state.batch_logs = []  # Collect info logs for auto-fixes

    # Load reference data for CAI/tAI
    load_reference_data(organism)
    cai_weights = st.session_state.get('cai_weights', None)
    tai_weights = st.session_state.get('tai_weights', None)

    # Create progress tracking
    progress_bar = st.progress(0)
    status_text = st.empty()

    for i, (seq, name) in enumerate(zip(sequences, names)):
        progress = (i + 1) / len(sequences)
        progress_bar.progress(progress)
        status_text.text(f"Processing {name} ({i+1}/{len(sequences)})")

        try:
            # Validate sequence and get possibly fixed sequence
            is_valid, message, sequence_type, fixed_seq = validate_sequence(seq)
            if is_valid:
                # Log if auto-fixed
                if 'auto-fixed' in message:
                    st.session_state.batch_logs.append(f"{name}: {message}")
                # Calculate original metrics (use fixed_seq for DNA)
                if sequence_type == "dna":
                    orig_gc = get_GC_content(fixed_seq)
                    orig_cai = CAI(fixed_seq, weights=cai_weights) if cai_weights else None
                    orig_tai = calculate_tAI(fixed_seq, tai_weights) if tai_weights else None
                else:
                    # For protein, create baseline DNA
                    most_frequent_codons = {
                        'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
                        'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
                        'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
                        'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
                        '*': 'TAA', '_': 'TAA'
                    }
                    baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in fixed_seq])
                    orig_gc = get_GC_content(baseline_dna)
                    orig_cai = CAI(baseline_dna, weights=cai_weights) if cai_weights else None
                    orig_tai = calculate_tAI(baseline_dna, tai_weights) if tai_weights else None

                # Run optimization using the fixed sequence
                result = predict_dna_sequence(
                    protein=fixed_seq if sequence_type == "protein" else translate_dna_to_protein(fixed_seq),
                    organism=organism,
                    device=st.session_state.device,
                    model=st.session_state.model,
                    deterministic=True,
                    match_protein=True,
                )

                # If result is a list, use the first element
                if isinstance(result, list):
                    result_obj = result[0]
                else:
                    result_obj = result

                # Calculate optimized metrics
                opt_gc = get_GC_content(result_obj.predicted_dna)
                opt_cai = CAI(result_obj.predicted_dna, weights=cai_weights) if cai_weights else None
                opt_tai = calculate_tAI(result_obj.predicted_dna, tai_weights) if tai_weights else None

                metrics = {
                    'name': name,
                    'original_sequence': fixed_seq,
                    'optimized_dna': result_obj.predicted_dna,
                    'gc_content_before': orig_gc,
                    'gc_content_after': opt_gc,
                    'cai_before': orig_cai,
                    'cai_after': opt_cai,
                    'tai_before': orig_tai,
                    'tai_after': opt_tai,
                    'length_before': len(fixed_seq),
                    'length_after': len(result_obj.predicted_dna),
                    'validation_message': message
                }

                st.session_state.batch_results.append(metrics)
            else:
                # Only skip if truly invalid (not auto-fixable)
                st.session_state.batch_logs.append(f"{name}: {message}")

        except Exception as e:
            st.session_state.batch_logs.append(f"{name}: Error processing: {str(e)}")

    progress_bar.empty()
    status_text.empty()
    st.success(f"βœ… Batch optimization complete! Processed {len(st.session_state.batch_results)} sequences.")

def display_batch_results():
    """Display batch processing results"""
    st.subheader("πŸ“Š Batch Results")

    # Show all logs (auto-fixes and errors)
    if hasattr(st.session_state, 'batch_logs') and st.session_state.batch_logs:
        for log in st.session_state.batch_logs:
            st.info(log)

    results_df = pd.DataFrame(st.session_state.batch_results)

    # Summary statistics
    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric("Sequences Processed", len(results_df))
    with col2:
        st.metric("Avg GC Before", f"{results_df['gc_content_before'].mean():.1f}%")
        st.metric("Avg GC After", f"{results_df['gc_content_after'].mean():.1f}%")
    with col3:
        st.metric("Avg CAI Before", f"{results_df['cai_before'].mean():.3f}")
        st.metric("Avg CAI After", f"{results_df['cai_after'].mean():.3f}")
    with col4:
        st.metric("Avg tAI Before", f"{results_df['tai_before'].mean():.3f}")
        st.metric("Avg tAI After", f"{results_df['tai_after'].mean():.3f}")

    # CAI Extremes Analysis
    st.subheader("🎯 CAI Performance Analysis")
    
    # Filter out rows with NaN CAI values for analysis
    valid_cai_df = results_df.dropna(subset=['cai_after'])
    
    if len(valid_cai_df) > 0:
        # Find lowest and highest CAI sequences
        lowest_cai_idx = valid_cai_df['cai_after'].idxmin()
        highest_cai_idx = valid_cai_df['cai_after'].idxmax()
        
        lowest_cai_row = results_df.loc[lowest_cai_idx]
        highest_cai_row = results_df.loc[highest_cai_idx]
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown("**πŸ”» Lowest CAI Sequence**")
            st.write(f"**Name:** {lowest_cai_row['name']}")
            st.metric("CAI Score", f"{lowest_cai_row['cai_after']:.3f}")
            st.metric("GC Content", f"{lowest_cai_row['gc_content_after']:.1f}%")
            st.metric("tAI Score", f"{lowest_cai_row['tai_after']:.3f}")
            st.metric("Length", f"{lowest_cai_row['length_after']} bp")
            
            # Show improvement
            if pd.notna(lowest_cai_row['cai_before']):
                cai_improvement = lowest_cai_row['cai_after'] - lowest_cai_row['cai_before']
                st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
        
        with col2:
            st.markdown("**πŸ”Ί Highest CAI Sequence**")
            st.write(f"**Name:** {highest_cai_row['name']}")
            st.metric("CAI Score", f"{highest_cai_row['cai_after']:.3f}")
            st.metric("GC Content", f"{highest_cai_row['gc_content_after']:.1f}%")
            st.metric("tAI Score", f"{highest_cai_row['tai_after']:.3f}")
            st.metric("Length", f"{highest_cai_row['length_after']} bp")
            
            # Show improvement
            if pd.notna(highest_cai_row['cai_before']):
                cai_improvement = highest_cai_row['cai_after'] - highest_cai_row['cai_before']
                st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
        
        # CAI Distribution Chart
        st.subheader("πŸ“Š CAI Distribution")
        fig = go.Figure()
        fig.add_trace(go.Histogram(
            x=valid_cai_df['cai_after'],
            nbinsx=20,
            name='Optimized CAI Scores',
            marker_color='darkblue',
            opacity=0.7
        ))
        
        # Add vertical lines for lowest and highest
        fig.add_vline(
            x=lowest_cai_row['cai_after'],
            line_dash="dash",
            line_color="red",
            annotation_text=f"Lowest: {lowest_cai_row['cai_after']:.3f}"
        )
        fig.add_vline(
            x=highest_cai_row['cai_after'],
            line_dash="dash", 
            line_color="green",
            annotation_text=f"Highest: {highest_cai_row['cai_after']:.3f}"
        )
        
        fig.update_layout(
            title="Distribution of Optimized CAI Scores",
            xaxis_title="CAI Score",
            yaxis_title="Number of Sequences",
            height=400,
            showlegend=False
        )
        st.plotly_chart(fig, use_container_width=True)

        # GC Content Distribution Chart
        st.subheader("πŸ“Š GC Content Distribution")
        valid_gc_df = results_df.dropna(subset=['gc_content_after'])
        if len(valid_gc_df) > 0:
            lowest_gc_idx = valid_gc_df['gc_content_after'].idxmin()
            highest_gc_idx = valid_gc_df['gc_content_after'].idxmax()
            lowest_gc_row = results_df.loc[lowest_gc_idx]
            highest_gc_row = results_df.loc[highest_gc_idx]

            fig_gc = go.Figure()
            fig_gc.add_trace(go.Histogram(
                x=valid_gc_df['gc_content_after'],
                nbinsx=20,
                name='Optimized GC Content',
                marker_color='teal',
                opacity=0.7
            ))
            fig_gc.add_vline(
                x=lowest_gc_row['gc_content_after'],
                line_dash="dash",
                line_color="red",
                annotation_text=f"Lowest: {lowest_gc_row['gc_content_after']:.1f}%"
            )
            fig_gc.add_vline(
                x=highest_gc_row['gc_content_after'],
                line_dash="dash",
                line_color="green",
                annotation_text=f"Highest: {highest_gc_row['gc_content_after']:.1f}%"
            )
            fig_gc.update_layout(
                title="Distribution of Optimized GC Content",
                xaxis_title="GC Content (%)",
                yaxis_title="Number of Sequences",
                height=400,
                showlegend=False
            )
            st.plotly_chart(fig_gc, use_container_width=True)
        else:
            st.warning("⚠️ No valid GC content values found in the batch results.")
        
    else:
        st.warning("⚠️ No valid CAI scores found in the batch results. Check if CAI weights are properly loaded.")

    # Sequence selector
    seq_names = results_df['name'].tolist()
    selected_seq = st.selectbox("Select a sequence to view details", seq_names)
    seq_row = results_df[results_df['name'] == selected_seq].iloc[0]

    st.markdown(f"### Details for: {selected_seq}")
    if 'validation_message' in seq_row and 'auto-fixed' in seq_row['validation_message']:
        st.info(seq_row['validation_message'])
    col1, col2 = st.columns(2)
    with col1:
        st.markdown("**Original Sequence**")
        st.text_area("Original Sequence", seq_row['original_sequence'], height=100)
        st.metric("GC Content (Before)", f"{seq_row['gc_content_before']:.1f}%")
        st.metric("CAI (Before)", f"{seq_row['cai_before']:.3f}")
        st.metric("tAI (Before)", f"{seq_row['tai_before']:.3f}")
        st.metric("Length (Before)", f"{seq_row['length_before']}")
    with col2:
        st.markdown("**Optimized Sequence**")
        st.text_area("Optimized Sequence", seq_row['optimized_dna'], height=100)
        st.metric("GC Content (After)", f"{seq_row['gc_content_after']:.1f}%")
        st.metric("CAI (After)", f"{seq_row['cai_after']:.3f}")
        st.metric("tAI (After)", f"{seq_row['tai_after']:.3f}")
        st.metric("Length (After)", f"{seq_row['length_after']}")

    # Plots for before/after GC content
    st.subheader("GC Content Distribution (Before vs After)")
    if len(seq_row['original_sequence']) > 150 and len(seq_row['optimized_dna']) > 150:
        fig_before = create_gc_content_plot(seq_row['original_sequence'])
        fig_before.update_layout(title="Before Optimization", height=300)
        fig_after = create_gc_content_plot(seq_row['optimized_dna'])
        fig_after.update_layout(title="After Optimization", height=300)
        st.plotly_chart(fig_before, use_container_width=True)
        st.plotly_chart(fig_after, use_container_width=True)
    else:
        st.info("Sequence(s) too short for sliding window analysis")

    # Download batch results
    if st.button("πŸ“₯ Download Batch Results"):
        csv_data = results_df.to_csv(index=False)
        st.download_button(
            label="Download CSV",
            data=csv_data,
            file_name="batch_optimization_results.csv",
            mime="text/csv"
        )

def comparative_analysis_interface():
    """Comparative analysis interface"""
    st.header("πŸ“Š Comparative Analysis")
    st.markdown("**Compare optimization strategies side-by-side**")

    st.info("🚧 **Coming Soon:** Compare our model against traditional methods (HFC, BFC, URC) and generate publication-quality comparative analysis.")

    # Placeholder for future implementation
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("Algorithm Comparison")
        st.write("β€’ ColiFormer (Our Model)")
        st.write("β€’ High Frequency Choice (HFC)")
        st.write("β€’ Background Frequency Choice (BFC)")
        st.write("β€’ Uniform Random Choice (URC)")

    with col2:
        st.subheader("Comparison Metrics")
        st.write("β€’ CAI Score Comparison")
        st.write("β€’ tAI Score Comparison")
        st.write("β€’ GC Content Analysis")
        st.write("β€’ Statistical Significance Testing")

def advanced_settings_interface():
    """Advanced settings and configuration interface"""
    st.header("βš™οΈ Advanced Settings")
    st.markdown("**Configure advanced parameters and model settings**")

    # Model configuration
    st.subheader("πŸ€– Model Configuration")
    col1, col2 = st.columns(2)

    with col1:
        st.write("**Current Model Status:**")
        if st.session_state.model:
            model_type = getattr(st.session_state, 'model_type', 'unknown')
            st.success(f"βœ… Model loaded: {model_type}")
            st.write(f"Device: {st.session_state.device}")
        else:
            st.warning("⚠️ Model not loaded")

    with col2:
        st.write("**Model Information:**")
        st.write("β€’ Architecture: BigBird Transformer")
        st.write("β€’ Parameters: 89.6M")
        st.write("β€’ Training: 4,316 high-CAI E. coli genes")
        st.write("β€’ Performance: +5.1% CAI, +8.6% tAI")

    # Performance tuning
    st.subheader("⚑ Performance Tuning")

    # Memory management
    col1, col2 = st.columns(2)
    with col1:
        if st.button("🧹 Clear Cache"):
            st.cache_data.clear()
            st.success("Cache cleared successfully")

    with col2:
        if st.button("πŸ”„ Reload Model"):
            st.session_state.model = None
            st.session_state.tokenizer = None
            st.rerun()

    # System information
    st.subheader("πŸ’» System Information")
    import torch
    col1, col2, col3 = st.columns(3)

    with col1:
        st.write("**PyTorch:**")
        st.write(f"Version: {torch.__version__}")
        st.write(f"CUDA Available: {torch.cuda.is_available()}")

    with col2:
        st.write("**Device:**")
        st.write(f"Current: {st.session_state.device}")
        if torch.cuda.is_available():
            st.write(f"GPU: {torch.cuda.get_device_name()}")

    with col3:
        st.write("**Memory:**")
        if torch.cuda.is_available():
            gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
            st.write(f"GPU Memory: {gpu_memory:.1f} GB")

    # Footer
    st.markdown("---")
    st.markdown("**ColiFormer **")
    st.markdown("πŸš€ Built for Nature Communications-level research β€’ Targeting >20% CAI improvements β€’ Aug 2025 experimental validation")

if __name__ == "__main__":
    main()