ColiFormer / app.py
saketh11's picture
Enhance display of optimized DNA sequence in app.py with dynamic text area height calculation for improved readability
95d2dc0
import streamlit as st
import torch
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from transformers import AutoTokenizer, BigBirdForMaskedLM
from huggingface_hub import hf_hub_download
from datasets import load_dataset
import time
import threading
from typing import Dict, Optional, Tuple
import warnings
warnings.filterwarnings("ignore")
# Import CodonTransformer modules
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from CodonTransformer.CodonPrediction import (
predict_dna_sequence,
load_model
)
from CodonTransformer.CodonEvaluation import (
get_GC_content,
calculate_tAI,
get_ecoli_tai_weights,
scan_for_restriction_sites,
count_negative_cis_elements,
calculate_homopolymer_runs
)
from CAI import CAI, relative_adaptiveness
from CodonTransformer.CodonUtils import get_organism2id_dict
import json
# Try to import post-processing features
try:
from CodonTransformer.CodonPostProcessing import (
polish_sequence_with_dnachisel,
DNACHISEL_AVAILABLE
)
POST_PROCESSING_AVAILABLE = True
except ImportError:
POST_PROCESSING_AVAILABLE = False
DNACHISEL_AVAILABLE = False
# Page configuration
st.set_page_config(
page_title="CodonTransformer GUI",
page_icon="🧬",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if 'model' not in st.session_state:
st.session_state.model = None
if 'tokenizer' not in st.session_state:
st.session_state.tokenizer = None
if 'device' not in st.session_state:
st.session_state.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if 'optimization_running' not in st.session_state:
st.session_state.optimization_running = False
if 'results' not in st.session_state:
st.session_state.results = None
if 'post_processed_results' not in st.session_state:
st.session_state.post_processed_results = None
if 'cai_weights' not in st.session_state:
st.session_state.cai_weights = None
if 'tai_weights' not in st.session_state:
st.session_state.tai_weights = None
def get_organism_tai_weights(organism: str) -> Dict[str, float]:
"""Get organism-specific tAI weights from pre-calculated data"""
try:
# Load organism-specific tAI weights
weights_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'organism_tai_weights.json')
with open(weights_file, 'r') as f:
all_weights = json.load(f)
if organism in all_weights:
return all_weights[organism]
else:
# Fallback to E. coli if organism not found
st.warning(f"tAI weights for {organism} not found, using E. coli weights")
return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
except Exception as e:
st.error(f"Error loading organism-specific tAI weights: {e}")
return get_ecoli_tai_weights()
def load_model_and_tokenizer():
"""Load the model and tokenizer with progress tracking"""
if st.session_state.model is None or st.session_state.tokenizer is None:
with st.spinner("Loading CodonTransformer model... This may take a few minutes."):
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Loading tokenizer...")
progress_bar.progress(25)
st.session_state.tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
status_text.text("Loading fine-tuned model from Hugging Face...")
progress_bar.progress(50)
try:
from huggingface_hub import hf_hub_download
hf_token = os.environ.get("HF_TOKEN")
status_text.text("⬇️ Downloading model from saketh11/ColiFormer...")
model_path = hf_hub_download(
repo_id="saketh11/ColiFormer",
filename="balanced_alm_finetune.ckpt",
cache_dir="./hf_cache",
token=hf_token
)
status_text.text("πŸ”„ Loading downloaded model...")
st.session_state.model = load_model(
model_path=model_path,
device=st.session_state.device,
attention_type="original_full"
)
status_text.text("βœ… Fine-tuned model loaded from Hugging Face (6.2% better CAI)")
st.session_state.model_type = "fine_tuned_hf"
except Exception as e:
status_text.text(f"⚠️ Failed to load from Hugging Face: {str(e)[:50]}...")
status_text.text("Loading base model as fallback...")
st.session_state.model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
if isinstance(st.session_state.model, torch.nn.Module):
st.session_state.model = st.session_state.model.to(st.session_state.device)
else:
st.warning("Fallback model loaded is not a PyTorch module. Cannot move to device.")
st.session_state.model_type = "base"
progress_bar.progress(100)
time.sleep(0.5)
status_text.empty()
progress_bar.empty()
@st.cache_data
def download_reference_data():
"""Download and cache reference data from Hugging Face"""
try:
from huggingface_hub import hf_hub_download
hf_token = os.environ.get("HF_TOKEN")
file_path = hf_hub_download(
repo_id="saketh11/ColiFormer-Data",
filename="ecoli_processed_genes.csv",
repo_type="dataset",
token=hf_token
)
df = pd.read_csv(file_path)
return df['dna_sequence'].tolist()
except Exception as e:
st.warning(f"Could not download reference data from Hugging Face: {e}")
return [
"ATGGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGC",
"ATGAAATTTATTTATTATTATAAATTTATTTATTATTATAAATTTATTTAT",
"ATGGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGT"
]
@st.cache_data
def download_tai_weights():
"""Download and cache tAI weights from Hugging Face"""
try:
from huggingface_hub import hf_hub_download
hf_token = os.environ.get("HF_TOKEN")
file_path = hf_hub_download(
repo_id="saketh11/ColiFormer-Data",
filename="organism_tai_weights.json",
repo_type="dataset",
token=hf_token
)
with open(file_path, 'r') as f:
all_weights = json.load(f)
return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
except Exception as e:
st.warning(f"Could not download tAI weights from Hugging Face: {e}")
return get_ecoli_tai_weights()
def load_reference_data(organism: str = "Escherichia coli general"):
"""Load reference sequences and tAI weights for E. coli"""
if 'cai_weights' not in st.session_state or st.session_state['cai_weights'] is None:
try:
# Download reference sequences from Hugging Face
with st.spinner("πŸ“₯ Downloading E. coli reference sequences from Hugging Face..."):
ref_sequences = download_reference_data()
st.session_state['cai_weights'] = relative_adaptiveness(sequences=ref_sequences)
if len(ref_sequences) > 100: # If we got the full dataset
st.success(f"βœ… Downloaded {len(ref_sequences):,} E. coli reference sequences for CAI calculation")
else:
st.info(f"⚠️ Using {len(ref_sequences)} minimal reference sequences (full dataset unavailable)")
except Exception as e:
st.error(f"Error loading E. coli reference data: {e}")
st.session_state['cai_weights'] = {}
# tAI weights (E. coli only)
if 'tai_weights' not in st.session_state or st.session_state['tai_weights'] is None:
try:
with st.spinner("πŸ“₯ Downloading E. coli tAI weights from Hugging Face..."):
st.session_state['tai_weights'] = download_tai_weights()
st.success("βœ… Downloaded E. coli tAI weights")
except Exception as e:
st.error(f"Error loading E. coli tAI weights: {e}")
st.session_state['tai_weights'] = {}
def validate_sequence(sequence: str) -> Tuple[bool, str, str, str]:
"""Validate sequence and return status, message, sequence type, and possibly fixed sequence"""
if not sequence:
return False, "Sequence cannot be empty", "unknown", sequence
# Remove whitespace and convert to uppercase
sequence = sequence.strip().upper()
# Check if it's a DNA sequence
dna_chars = set("ATGC")
protein_chars = set("ACDEFGHIKLMNPQRSTVWY*_")
sequence_chars = set(sequence)
# If all characters are DNA nucleotides, treat as DNA
if sequence_chars.issubset(dna_chars):
if len(sequence) < 3:
return False, "DNA sequence must be at least 3 nucleotides long", "dna", sequence
# Auto-fix DNA sequences not divisible by 3
if len(sequence) % 3 != 0:
remainder = len(sequence) % 3
fixed_sequence = sequence[:-remainder]
message = f"Valid DNA sequence (auto-fixed: removed {remainder} nucleotides from end to make divisible by 3)"
else:
fixed_sequence = sequence
message = "Valid DNA sequence"
return True, message, "dna", fixed_sequence
# If contains protein-specific amino acids, treat as protein
elif sequence_chars.issubset(protein_chars):
if len(sequence) < 3:
return False, "Protein sequence must be at least 3 amino acids long", "protein", sequence
return True, "Valid protein sequence", "protein", sequence
# Invalid characters
else:
invalid_chars = sequence_chars - (dna_chars | protein_chars)
return False, f"Invalid characters found: {', '.join(invalid_chars)}", "unknown", sequence
def calculate_input_metrics(sequence: str, organism: str, sequence_type: str) -> Dict:
"""Calculate metrics for the input sequence using E. coli reference only"""
# Load reference data (E. coli only)
load_reference_data()
if sequence_type == "dna":
dna_sequence = sequence.upper()
metrics = {
'length': len(dna_sequence) // 3,
'gc_content': get_GC_content(dna_sequence),
'baseline_dna': dna_sequence,
'sequence_type': 'dna'
}
try:
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
metrics['cai'] = CAI(dna_sequence, weights=st.session_state['cai_weights'])
else:
metrics['cai'] = None
except:
metrics['cai'] = None
try:
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
metrics['tai'] = calculate_tAI(dna_sequence, st.session_state['tai_weights'])
else:
metrics['tai'] = None
except:
metrics['tai'] = None
else:
most_frequent_codons = {
'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
'*': 'TAA', '_': 'TAA'
}
baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in sequence])
metrics = {
'length': len(sequence),
'gc_content': get_GC_content(baseline_dna),
'baseline_dna': baseline_dna,
'sequence_type': 'protein'
}
try:
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
metrics['cai'] = CAI(baseline_dna, weights=st.session_state['cai_weights'])
else:
metrics['cai'] = None
except:
metrics['cai'] = None
try:
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
metrics['tai'] = calculate_tAI(baseline_dna, st.session_state['tai_weights'])
else:
metrics['tai'] = None
except:
metrics['tai'] = None
try:
analysis_dna = metrics['baseline_dna']
# scan_for_restriction_sites returns an int, not a list, so no need for len()
metrics['restriction_sites'] = scan_for_restriction_sites(analysis_dna)
metrics['negative_cis_elements'] = count_negative_cis_elements(analysis_dna)
metrics['homopolymer_runs'] = calculate_homopolymer_runs(analysis_dna)
except:
metrics['restriction_sites'] = 0
metrics['negative_cis_elements'] = 0
metrics['homopolymer_runs'] = 0
return metrics
def translate_dna_to_protein(dna_sequence: str) -> str:
"""Translate DNA sequence to protein sequence"""
codon_table = {
'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S',
'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*',
'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W',
'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L',
'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M',
'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K',
'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R',
'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E',
'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G'
}
protein = ""
for i in range(0, len(dna_sequence), 3):
codon = dna_sequence[i:i+3].upper()
if len(codon) == 3:
aa = codon_table.get(codon, 'X')
if aa == '*': # Stop codon
break
protein += aa
return protein
def create_gc_content_plot(sequence: str, window_size: int = 50) -> go.Figure:
"""Create a sliding window GC content plot"""
if len(sequence) < window_size:
window_size = len(sequence) // 3
positions = []
gc_values = []
for i in range(0, len(sequence) - window_size + 1, 3): # Step by codons
window = sequence[i:i + window_size]
gc_content = get_GC_content(window)
positions.append(i // 3) # Position in codons
gc_values.append(gc_content)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=positions,
y=gc_values,
mode='lines',
name='GC Content',
line=dict(color='blue', width=2)
))
# Add target range
fig.add_hline(y=45, line_dash="dash", line_color="red",
annotation_text="Min Target (45%)")
fig.add_hline(y=55, line_dash="dash", line_color="red",
annotation_text="Max Target (55%)")
fig.update_layout(
title=f'GC Content (sliding window: {window_size} bp)',
xaxis_title='Position (codons)',
yaxis_title='GC Content (%)',
height=300
)
return fig
def create_gc_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
"""Create a comparison chart for GC Content"""
fig = go.Figure()
fig.add_trace(go.Bar(
name='Before Optimization',
x=['GC Content (%)'],
y=[before_metrics.get('gc_content', 0)],
marker_color='lightblue',
text=[f"{before_metrics.get('gc_content', 0):.1f}%"],
textposition='auto'
))
fig.add_trace(go.Bar(
name='After Optimization',
x=['GC Content (%)'],
y=[after_metrics.get('gc_content', 0)],
marker_color='darkblue',
text=[f"{after_metrics.get('gc_content', 0):.1f}%"],
textposition='auto'
))
fig.update_layout(
title='GC Content Comparison: Before vs After',
xaxis_title='Metric',
yaxis_title='Value (%)',
barmode='group',
height=300
)
return fig
def create_expression_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
"""Create a comparison chart for expression metrics (CAI, tAI)"""
metrics_names = ['CAI', 'tAI']
before_values = [
before_metrics.get('cai', 0) if before_metrics.get('cai') else 0,
before_metrics.get('tai', 0) if before_metrics.get('tai') else 0
]
after_values = [
after_metrics.get('cai', 0) if after_metrics.get('cai') else 0,
after_metrics.get('tai', 0) if after_metrics.get('tai') else 0
]
fig = go.Figure()
fig.add_trace(go.Bar(
name='Before Optimization',
x=metrics_names,
y=before_values,
marker_color='lightblue',
text=[f"{v:.3f}" for v in before_values],
textposition='auto'
))
fig.add_trace(go.Bar(
name='After Optimization',
x=metrics_names,
y=after_values,
marker_color='darkblue',
text=[f"{v:.3f}" for v in after_values],
textposition='auto'
))
fig.update_layout(
title='Expression Metrics Comparison: Before vs After',
xaxis_title='Metric',
yaxis_title='Value',
barmode='group',
height=300
)
return fig
def smart_codon_replacement(dna_sequence: str, target_gc_min: float = 0.45, target_gc_max: float = 0.55, max_iterations: int = 100) -> str:
"""Smart codon replacement to optimize GC content while maximizing CAI"""
# Codon alternatives with their GC content
codon_alternatives = {
# Serine: high GC options
'TCT': ['TCG', 'TCC', 'TCA', 'AGT', 'AGC'], # 33% -> 67%, 67%, 33%, 33%, 67%
'TCA': ['TCG', 'TCC', 'TCT', 'AGT', 'AGC'],
'AGT': ['TCG', 'TCC', 'TCT', 'TCA', 'AGC'],
# Leucine: various GC options
'TTA': ['TTG', 'CTT', 'CTC', 'CTA', 'CTG'], # 0% -> 33%, 33%, 67%, 33%, 67%
'TTG': ['TTA', 'CTT', 'CTC', 'CTA', 'CTG'],
'CTT': ['CTG', 'CTC', 'TTA', 'TTG', 'CTA'],
'CTA': ['CTG', 'CTC', 'CTT', 'TTA', 'TTG'],
# Arginine: various GC options
'AGA': ['CGT', 'CGC', 'CGA', 'CGG', 'AGG'], # 33% -> 67%, 100%, 67%, 100%, 67%
'AGG': ['CGT', 'CGC', 'CGA', 'CGG', 'AGA'],
'CGT': ['CGC', 'CGG', 'CGA', 'AGA', 'AGG'],
'CGA': ['CGC', 'CGG', 'CGT', 'AGA', 'AGG'],
# Proline
'CCT': ['CCG', 'CCC', 'CCA'], # 67% -> 100%, 100%, 67%
'CCA': ['CCG', 'CCC', 'CCT'],
# Threonine
'ACT': ['ACG', 'ACC', 'ACA'], # 33% -> 67%, 67%, 33%
'ACA': ['ACG', 'ACC', 'ACT'],
# Alanine
'GCT': ['GCG', 'GCC', 'GCA'], # 67% -> 100%, 100%, 67%
'GCA': ['GCG', 'GCC', 'GCT'],
# Glycine
'GGT': ['GGG', 'GGC', 'GGA'], # 67% -> 100%, 100%, 67%
'GGA': ['GGG', 'GGC', 'GGT'],
# Valine
'GTT': ['GTG', 'GTC', 'GTA'], # 67% -> 100%, 100%, 67%
'GTA': ['GTG', 'GTC', 'GTT'],
}
def get_codon_gc(codon):
return (codon.count('G') + codon.count('C')) / 3.0
current_sequence = dna_sequence.upper()
current_gc = get_GC_content(current_sequence)
if target_gc_min <= current_gc <= target_gc_max:
return current_sequence
codons = [current_sequence[i:i+3] for i in range(0, len(current_sequence), 3)]
for iteration in range(max_iterations):
current_gc = get_GC_content(''.join(codons))
if target_gc_min <= current_gc <= target_gc_max:
break
# Find best codon to replace
best_improvement = 0
best_pos = -1
best_replacement = None
for pos, codon in enumerate(codons):
if codon in codon_alternatives:
for alt_codon in codon_alternatives[codon]:
# Calculate GC change
old_gc_contrib = get_codon_gc(codon)
new_gc_contrib = get_codon_gc(alt_codon)
gc_change = new_gc_contrib - old_gc_contrib
# Check if this change moves us toward target
if current_gc < target_gc_min and gc_change > best_improvement:
best_improvement = gc_change
best_pos = pos
best_replacement = alt_codon
elif current_gc > target_gc_max and gc_change < best_improvement:
best_improvement = abs(gc_change)
best_pos = pos
best_replacement = alt_codon
if best_pos >= 0:
if isinstance(best_replacement, str):
codons[best_pos] = best_replacement
else:
break # No more improvements possible
return ''.join(codons)
def run_optimization(protein: str, organism: str, use_post_processing: bool = False):
"""Run the optimization using the exact method from run_full_comparison.py with auto GC correction"""
st.session_state.optimization_running = True
st.session_state.post_processed_results = None
try:
# Use the exact same method that achieved best results in evaluation
result = predict_dna_sequence(
protein=protein,
organism=organism,
device=st.session_state.device,
model=st.session_state.model,
deterministic=True,
match_protein=True,
)
# Check GC content and auto-correct if out of optimal range
_res = result[0] if isinstance(result, list) else result
initial_gc = get_GC_content(_res.predicted_dna)
if initial_gc < 45.0 or initial_gc > 55.0:
# Auto-correct GC content silently
optimized_dna = smart_codon_replacement(_res.predicted_dna, 0.45, 0.55)
smart_gc = get_GC_content(optimized_dna)
if 45.0 <= smart_gc <= 55.0:
from CodonTransformer.CodonUtils import DNASequencePrediction
result = DNASequencePrediction(
organism=_res.organism,
protein=_res.protein,
processed_input=_res.processed_input,
predicted_dna=optimized_dna
)
else:
# Fall back to constrained beam search silently
try:
result = predict_dna_sequence(
protein=protein,
organism=organism,
device=st.session_state.device,
model=st.session_state.model,
deterministic=True,
match_protein=True,
use_constrained_search=True,
gc_bounds=(0.45, 0.55),
beam_size=20
)
_res2 = result[0] if isinstance(result, list) else result
final_gc = get_GC_content(_res2.predicted_dna)
except Exception as e:
# If constrained search fails, use smart replacement result anyway
from CodonTransformer.CodonUtils import DNASequencePrediction
result = DNASequencePrediction(
organism=_res.organism,
protein=_res.protein,
processed_input=_res.processed_input,
predicted_dna=optimized_dna
)
st.session_state.results = result
# Post-processing if enabled
if use_post_processing and POST_PROCESSING_AVAILABLE and result:
try:
_res = result[0] if isinstance(result, list) else result
polished_sequence = polish_sequence_with_dnachisel(
dna_sequence=_res.predicted_dna,
protein_sequence=protein,
gc_bounds=(45.0, 55.0),
cai_species=organism.lower().replace(' ', '_'),
avoid_homopolymers_length=6
)
# Create enhanced result object
from CodonTransformer.CodonUtils import DNASequencePrediction
st.session_state.post_processed_results = DNASequencePrediction(
organism=_res.organism,
protein=_res.protein,
processed_input=_res.processed_input,
predicted_dna=polished_sequence
)
except Exception as e:
st.session_state.post_processed_results = f"Post-processing error: {str(e)}"
except Exception as e:
st.session_state.results = f"Error: {str(e)}"
finally:
st.session_state.optimization_running = False
def main():
st.title("🧬 ColiFormer")
# Remove the performance highlights expander (details/summary block)
# (No expander here anymore)
# Load model
load_model_and_tokenizer()
# Create the main tabbed interface
tab1, tab2, tab3, tab4 = st.tabs(["🧬 Single Optimize", "πŸ“ Batch Process", "πŸ“Š Comparative Analysis", "βš™οΈ Advanced Settings"])
with tab1:
single_sequence_optimization()
with tab2:
batch_processing_interface()
with tab3:
comparative_analysis_interface()
with tab4:
advanced_settings_interface()
def single_sequence_optimization():
"""Single sequence optimization interface - enhanced from original functionality"""
# Sidebar configuration
st.sidebar.header("πŸ”§ Configuration")
organism_options = [
"Escherichia coli general",
"Saccharomyces cerevisiae",
"Homo sapiens",
"Bacillus subtilis",
"Pichia pastoris"
]
organism = st.sidebar.selectbox("Select Target Organism", organism_options)
load_reference_data(organism)
with st.sidebar.expander("πŸ”§ Advanced Optimization Settings"):
st.markdown("**Model Parameters**")
use_deterministic = st.checkbox("Deterministic Mode", value=True, help="Use deterministic decoding for reproducible results")
match_protein = st.checkbox("Match Protein Validation", value=True, help="Ensure DNA translates back to exact protein")
st.markdown("**GC Content Control**")
gc_target_min = st.slider("GC Target Min (%)", 30, 70, 45, help="Minimum GC content target")
gc_target_max = st.slider("GC Target Max (%)", 30, 70, 55, help="Maximum GC content target")
st.markdown("**Quality Constraints**")
avoid_restriction_sites = st.multiselect(
"Avoid Restriction Sites",
["EcoRI", "BamHI", "HindIII", "XhoI", "NotI"],
default=["EcoRI", "BamHI"]
)
st.sidebar.subheader("πŸ”¬ Post-Processing")
use_post_processing = st.sidebar.checkbox(
"Enable DNAChisel Post-Processing",
value=False,
disabled=not POST_PROCESSING_AVAILABLE,
help="Polish sequences to remove restriction sites, homopolymers, and synthesis issues"
)
if not POST_PROCESSING_AVAILABLE:
st.sidebar.warning("⚠️ DNAChisel not available. Install with: pip install dnachisel")
# Dataset Information
st.sidebar.markdown("---")
st.sidebar.markdown("### πŸ“Š Dataset Information")
st.sidebar.markdown("""
- **Dataset**: [ColiFormer-Data](https://huggingface.co/datasets/saketh11/ColiFormer-Data)
- **Training**: 4,300 high-CAI E. coli sequences
- **Reference**: 50,000+ E. coli gene sequences
- **Auto-download**: CAI weights & tAI coefficients
""")
# Model Information
st.sidebar.markdown("### πŸ€– Model Information")
st.sidebar.markdown("""
- **Model**: [ColiFormer](https://huggingface.co/saketh11/ColiFormer)
- **Improvement**: +6.2% CAI vs base model
- **Architecture**: BigBird Transformer + ALM
- **Auto-download**: From Hugging Face Hub
""")
col1, col2 = st.columns([1, 1])
with col1:
st.header("🧬 Input Sequence")
sequence_input = st.text_area(
"Enter Protein or DNA Sequence",
height=300,
placeholder="Enter protein sequence (MKWVT...) or DNA sequence (ATGGCG...)\n\nExample protein: MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTE"
)
analyze_btn = st.button("Analyze Sequence", type="primary")
if sequence_input and analyze_btn:
is_valid, message, sequence_type, fixed_sequence = validate_sequence(sequence_input)
if is_valid:
st.success(f"βœ… {message}")
# Store in session state for use by Optimize Sequence
st.session_state.sequence_clean = fixed_sequence
st.session_state.sequence_type = sequence_type
st.session_state.input_metrics = calculate_input_metrics(fixed_sequence, organism, sequence_type)
st.session_state.organism = organism
else:
st.error(f"❌ {message}")
if "Invalid characters" in message:
st.info("πŸ’‘ **Suggestion:** Remove spaces, numbers, and special characters. Use only standard amino acid letters (A-Z) for proteins or nucleotides (ATGC) for DNA.")
elif "too long" in message:
st.info("πŸ’‘ **Suggestion:** Consider breaking long sequences into smaller segments for optimization.")
elif "too short" in message:
st.info("πŸ’‘ **Suggestion:** Minimum length is 3 characters. Ensure your sequence is complete.")
# Clear session state if invalid
st.session_state.sequence_clean = None
st.session_state.sequence_type = None
st.session_state.input_metrics = None
st.session_state.organism = None
elif not sequence_input:
st.session_state.sequence_clean = None
st.session_state.sequence_type = None
st.session_state.input_metrics = None
st.session_state.organism = None
# Always display the last analysis if it exists in session state
if st.session_state.get('input_metrics') and st.session_state.get('sequence_type'):
input_metrics = st.session_state.input_metrics
sequence_type = st.session_state.sequence_type
st.subheader("πŸ“Š Input Analysis")
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
with metrics_col1:
unit = "codons" if sequence_type == "dna" else "AA"
length = input_metrics.get('length', 0) if input_metrics else 0
gc_content = input_metrics.get('gc_content', 0) if input_metrics else 0
st.metric("Length", f"{length} {unit}")
st.metric("GC Content", f"{gc_content:.1f}%")
with metrics_col2:
cai_val = input_metrics.get('cai') if input_metrics else None
if cai_val:
label = "CAI" if sequence_type == "dna" else "CAI (baseline)"
st.metric(label, f"{cai_val:.3f}")
else:
st.metric("CAI", "N/A")
with metrics_col3:
tai_val = input_metrics.get('tai') if input_metrics else None
if tai_val:
label = "tAI" if sequence_type == "dna" else "tAI (baseline)"
st.metric(label, f"{tai_val:.3f}")
else:
st.metric("tAI", "N/A")
st.subheader("πŸ” Sequence Quality Analysis")
analysis_col1, analysis_col2, analysis_col3 = st.columns(3)
with analysis_col1:
sites_count = input_metrics.get('restriction_sites', 0) if input_metrics else 0
color = "normal" if sites_count <= 2 else "inverse"
st.metric("Restriction Sites", sites_count)
with analysis_col2:
neg_elements = input_metrics.get('negative_cis_elements', 0) if input_metrics else 0
st.metric("Negative Elements", neg_elements)
with analysis_col3:
homo_runs = input_metrics.get('homopolymer_runs', 0) if input_metrics else 0
st.metric("Homopolymer Runs", homo_runs)
baseline_dna = input_metrics.get('baseline_dna', '') if input_metrics else ''
if baseline_dna and len(baseline_dna) > 150:
st.subheader("πŸ“ˆ GC Content Distribution")
fig = create_gc_content_plot(baseline_dna)
fig.update_layout(
title="Input Sequence GC Content Analysis",
xaxis_title="Position (codons)",
yaxis_title="GC Content (%)",
hovermode='x unified'
)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.header("πŸš€ Optimization Results")
# Enhanced optimization button
if (
st.session_state.get('sequence_clean')
and st.session_state.get('sequence_type')
and not st.session_state.optimization_running
):
st.markdown("**Ready to optimize your sequence!**")
strategy_info = st.container()
with strategy_info:
st.info(f"""
**Optimization Strategy:**
β€’ Target organism: {st.session_state.organism}
β€’ Model: Fine-tuned CodonTransformer (89.6M parameters)
β€’ GC target: {gc_target_min}-{gc_target_max}%
β€’ Mode: {'Deterministic' if use_deterministic else 'Stochastic'}
""")
if st.button("πŸš€ Optimize Sequence", type="primary", use_container_width=True):
st.session_state.results = None
if st.session_state.sequence_type == "dna":
protein_sequence = translate_dna_to_protein(str(st.session_state.sequence_clean))
run_optimization(protein_sequence, str(st.session_state.organism), use_post_processing)
else:
run_optimization(str(st.session_state.sequence_clean), str(st.session_state.organism), use_post_processing)
# Enhanced progress display
if st.session_state.optimization_running:
st.info("πŸ”„ **Optimizing sequence with our model...**")
# Create progress container
progress_container = st.container()
with progress_container:
progress_bar = st.progress(0)
status_text = st.empty()
# Enhanced progress steps
steps = [
"πŸ” Analyzing input sequence structure...",
"🧬 Loading fine-tuned CodonTransformer model...",
"⚑ Running optimization algorithm...",
"🎯 Optimizing GC content for synthesis...",
"βœ… Finalizing optimized sequence..."
]
for i, step in enumerate(steps):
progress_value = int((i + 1) / len(steps) * 100)
progress_bar.progress(progress_value)
status_text.text(step)
time.sleep(0.8) # Realistic timing
progress_bar.empty()
status_text.empty()
# Enhanced results display
if st.session_state.results and not st.session_state.optimization_running:
if isinstance(st.session_state.results, str):
st.error(f"❌ **Optimization Failed:** {st.session_state.results}")
else:
display_optimization_results(
st.session_state.results,
st.session_state.get('organism', organism),
st.session_state.get('sequence_clean', ''),
st.session_state.get('sequence_type', 'protein'),
st.session_state.get('input_metrics', {})
)
def display_optimization_results(result, organism, original_sequence, sequence_type, input_metrics):
"""Enhanced results display with publication-quality visualizations"""
# Calculate optimized metrics
optimized_metrics = {
'gc_content': get_GC_content(result.predicted_dna),
'length': len(result.predicted_dna)
}
# Calculate CAI and tAI
try:
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
optimized_metrics['cai'] = CAI(result.predicted_dna, weights=st.session_state['cai_weights'])
else:
optimized_metrics['cai'] = None
except:
optimized_metrics['cai'] = None
try:
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
optimized_metrics['tai'] = calculate_tAI(result.predicted_dna, st.session_state['tai_weights'])
else:
optimized_metrics['tai'] = None
except:
optimized_metrics['tai'] = None
# Success header
st.success("βœ… **Optimization Complete!** ")
# Key improvements summary
st.subheader("🎯 Optimization Improvements")
imp_col1, imp_col2, imp_col3 = st.columns(3)
if input_metrics is not None:
with imp_col1:
if input_metrics.get('gc_content') and optimized_metrics.get('gc_content'):
gc_change = optimized_metrics['gc_content'] - input_metrics['gc_content']
st.metric("GC Content", f"{optimized_metrics['gc_content']:.1f}%", delta=f"{gc_change:+.1f}%")
with imp_col2:
if input_metrics.get('cai') and optimized_metrics.get('cai'):
cai_change = optimized_metrics['cai'] - input_metrics['cai']
st.metric("CAI Score", f"{optimized_metrics['cai']:.3f}", delta=f"{cai_change:+.3f}")
with imp_col3:
if input_metrics.get('tai') and optimized_metrics.get('tai'):
tai_change = optimized_metrics['tai'] - input_metrics['tai']
st.metric("tAI Score", f"{optimized_metrics['tai']:.3f}", delta=f"{tai_change:+.3f}")
# Optimized DNA sequence display
st.subheader("🧬 Optimized DNA Sequence")
# Calculate dynamic height for the text area
estimated_chars_per_line = 100 # Rough estimate for wide layout
line_height_px = 20 # Rough estimate for font size
min_height_px = 150
num_lines = (len(result.predicted_dna) // estimated_chars_per_line) + 1
dynamic_height = max(min_height_px, num_lines * line_height_px)
st.text_area("Optimized DNA Sequence", result.predicted_dna, height=dynamic_height)
# Enhanced download and export options
col1, col2, col3 = st.columns(3)
with col1:
st.download_button(
label="πŸ“₯ Download DNA (FASTA)",
data=f">Optimized_{organism.replace(' ', '_')}\n{result.predicted_dna}",
file_name=f"optimized_sequence_{organism.replace(' ', '_')}.fasta",
mime="text/plain"
)
with col2:
# Create CSV report
csv_data = f"Metric,Original,Optimized,Improvement\n"
csv_data += f"GC Content (%),{input_metrics['gc_content']:.1f},{optimized_metrics['gc_content']:.1f},{optimized_metrics['gc_content'] - input_metrics['gc_content']:+.1f}\n"
if input_metrics['cai'] and optimized_metrics['cai']:
csv_data += f"CAI Score,{input_metrics['cai']:.3f},{optimized_metrics['cai']:.3f},{optimized_metrics['cai'] - input_metrics['cai']:+.3f}\n"
if input_metrics['tai'] and optimized_metrics['tai']:
csv_data += f"tAI Score,{input_metrics['tai']:.3f},{optimized_metrics['tai']:.3f},{optimized_metrics['tai'] - input_metrics['tai']:+.3f}\n"
st.download_button(
label="πŸ“Š Download Metrics (CSV)",
data=csv_data,
file_name=f"optimization_metrics_{organism.replace(' ', '_')}.csv",
mime="text/csv"
)
with col3:
st.button("πŸ“„ Generate PDF Report", help="Coming soon: Publication-quality PDF report")
# Enhanced comparison visualizations
st.subheader("πŸ“Š Before vs After Analysis")
# Create enhanced comparison charts
create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_sequence, result.predicted_dna, sequence_type)
def create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_dna, optimized_dna, sequence_type):
"""Create publication-quality comparison visualizations"""
if input_metrics is None or optimized_metrics is None:
st.info("No comparison data available.")
return
# GC Content comparison
gc_comp_fig = create_gc_comparison_chart(input_metrics, optimized_metrics)
gc_comp_fig.update_layout(
title="GC Content Optimization Results",
font=dict(size=12),
height=350
)
st.plotly_chart(gc_comp_fig, use_container_width=True)
# Expression metrics comparison
if input_metrics.get('cai') and optimized_metrics.get('cai'):
expr_comp_fig = create_expression_comparison_chart(input_metrics, optimized_metrics)
expr_comp_fig.update_layout(
title="Expression Potential Improvement",
font=dict(size=12),
height=350
)
st.plotly_chart(expr_comp_fig, use_container_width=True)
# Side-by-side GC distribution analysis
st.subheader("πŸ“ˆ GC Content Distribution Analysis")
col1, col2 = st.columns(2)
with col1:
st.write(f"**{'Original DNA' if sequence_type == 'dna' else 'Baseline (Most Frequent Codons)'}**")
baseline_dna = input_metrics.get('baseline_dna') if input_metrics else None
plot_dna = baseline_dna if baseline_dna is not None else original_dna
if plot_dna is not None and isinstance(plot_dna, str) and len(plot_dna) > 150:
fig_before = create_gc_content_plot(plot_dna)
fig_before.update_layout(title="Before Optimization", height=300)
st.plotly_chart(fig_before, use_container_width=True)
else:
st.info("Sequence too short for sliding window analysis")
with col2:
st.write("** Model Optimized**")
if optimized_dna is not None and isinstance(optimized_dna, str) and len(optimized_dna) > 150:
fig_after = create_gc_content_plot(optimized_dna)
fig_after.update_layout(title="After Optimization", height=300)
st.plotly_chart(fig_after, use_container_width=True)
else:
st.info("Sequence too short for sliding window analysis")
def batch_processing_interface():
"""Batch processing interface for multiple sequences"""
st.header("πŸ“ Batch Processing")
st.markdown("**Process multiple protein sequences simultaneously with optimization**")
# File upload section
st.subheader("πŸ“€ Upload Sequences")
uploaded_file = st.file_uploader(
"Choose a file with multiple sequences",
type=['csv', 'xlsx', 'fasta', 'txt', 'fa'],
help="Upload CSV, Excel (XLSX, with 'sequence' column) or FASTA format files"
)
if uploaded_file:
st.success(f"βœ… File uploaded: {uploaded_file.name}")
# Process uploaded file
try:
def find_column(df, target):
# Find column name case-insensitively and ignoring spaces
for col in df.columns:
if col.strip().lower() == target:
return col
return None
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
seq_col = find_column(df, 'sequence')
name_col = find_column(df, 'name')
if seq_col:
sequences = df[seq_col].tolist()
if name_col:
names = df[name_col].tolist()
else:
names = [f"Sequence_{i+1}" for i in range(len(sequences))]
else:
st.error("CSV file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
return
elif uploaded_file.name.endswith('.xlsx'):
df = pd.read_excel(uploaded_file)
seq_col = find_column(df, 'sequence')
name_col = find_column(df, 'name')
if seq_col:
sequences = df[seq_col].tolist()
if name_col:
names = df[name_col].tolist()
else:
names = [f"Sequence_{i+1}" for i in range(len(sequences))]
else:
st.error("Excel file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
return
else:
# Handle FASTA format
content = uploaded_file.read().decode('utf-8')
sequences, names = parse_fasta_content(content)
st.info(f"πŸ“Š Found {len(sequences)} sequences ready for optimization")
# Batch configuration
col1, col2 = st.columns(2)
with col1:
batch_organism = st.selectbox("Target Organism", [
"Escherichia coli general", "Saccharomyces cerevisiae", "Homo sapiens"
])
with col2:
max_sequences = st.number_input("Max sequences to process", 1, len(sequences), min(10, len(sequences)))
# Start batch processing
if st.button("πŸš€ Start Batch Optimization", type="primary"):
run_batch_optimization(sequences[:max_sequences], names[:max_sequences], batch_organism)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
# Batch results display
if 'batch_results' in st.session_state and st.session_state.batch_results:
display_batch_results()
def parse_fasta_content(content):
"""Parse FASTA format content"""
sequences = []
names = []
current_seq = ""
current_name = ""
for line in content.split('\n'):
line = line.strip()
if line.startswith('>'):
if current_seq:
sequences.append(current_seq)
names.append(current_name)
current_name = line[1:] if len(line) > 1 else f"Sequence_{len(sequences)+1}"
current_seq = ""
else:
current_seq += line
if current_seq:
sequences.append(current_seq)
names.append(current_name)
return sequences, names
def run_batch_optimization(sequences, names, organism):
"""Run batch optimization with progress tracking"""
st.session_state.batch_results = []
st.session_state.batch_logs = [] # Collect info logs for auto-fixes
# Load reference data for CAI/tAI
load_reference_data(organism)
cai_weights = st.session_state.get('cai_weights', None)
tai_weights = st.session_state.get('tai_weights', None)
# Create progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
for i, (seq, name) in enumerate(zip(sequences, names)):
progress = (i + 1) / len(sequences)
progress_bar.progress(progress)
status_text.text(f"Processing {name} ({i+1}/{len(sequences)})")
try:
# Validate sequence and get possibly fixed sequence
is_valid, message, sequence_type, fixed_seq = validate_sequence(seq)
if is_valid:
# Log if auto-fixed
if 'auto-fixed' in message:
st.session_state.batch_logs.append(f"{name}: {message}")
# Calculate original metrics (use fixed_seq for DNA)
if sequence_type == "dna":
orig_gc = get_GC_content(fixed_seq)
orig_cai = CAI(fixed_seq, weights=cai_weights) if cai_weights else None
orig_tai = calculate_tAI(fixed_seq, tai_weights) if tai_weights else None
else:
# For protein, create baseline DNA
most_frequent_codons = {
'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
'*': 'TAA', '_': 'TAA'
}
baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in fixed_seq])
orig_gc = get_GC_content(baseline_dna)
orig_cai = CAI(baseline_dna, weights=cai_weights) if cai_weights else None
orig_tai = calculate_tAI(baseline_dna, tai_weights) if tai_weights else None
# Run optimization using the fixed sequence
result = predict_dna_sequence(
protein=fixed_seq if sequence_type == "protein" else translate_dna_to_protein(fixed_seq),
organism=organism,
device=st.session_state.device,
model=st.session_state.model,
deterministic=True,
match_protein=True,
)
# If result is a list, use the first element
if isinstance(result, list):
result_obj = result[0]
else:
result_obj = result
# Calculate optimized metrics
opt_gc = get_GC_content(result_obj.predicted_dna)
opt_cai = CAI(result_obj.predicted_dna, weights=cai_weights) if cai_weights else None
opt_tai = calculate_tAI(result_obj.predicted_dna, tai_weights) if tai_weights else None
metrics = {
'name': name,
'original_sequence': fixed_seq,
'optimized_dna': result_obj.predicted_dna,
'gc_content_before': orig_gc,
'gc_content_after': opt_gc,
'cai_before': orig_cai,
'cai_after': opt_cai,
'tai_before': orig_tai,
'tai_after': opt_tai,
'length_before': len(fixed_seq),
'length_after': len(result_obj.predicted_dna),
'validation_message': message
}
st.session_state.batch_results.append(metrics)
else:
# Only skip if truly invalid (not auto-fixable)
st.session_state.batch_logs.append(f"{name}: {message}")
except Exception as e:
st.session_state.batch_logs.append(f"{name}: Error processing: {str(e)}")
progress_bar.empty()
status_text.empty()
st.success(f"βœ… Batch optimization complete! Processed {len(st.session_state.batch_results)} sequences.")
def display_batch_results():
"""Display batch processing results"""
st.subheader("πŸ“Š Batch Results")
# Show all logs (auto-fixes and errors)
if hasattr(st.session_state, 'batch_logs') and st.session_state.batch_logs:
for log in st.session_state.batch_logs:
st.info(log)
results_df = pd.DataFrame(st.session_state.batch_results)
# Summary statistics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Sequences Processed", len(results_df))
with col2:
st.metric("Avg GC Before", f"{results_df['gc_content_before'].mean():.1f}%")
st.metric("Avg GC After", f"{results_df['gc_content_after'].mean():.1f}%")
with col3:
st.metric("Avg CAI Before", f"{results_df['cai_before'].mean():.3f}")
st.metric("Avg CAI After", f"{results_df['cai_after'].mean():.3f}")
with col4:
st.metric("Avg tAI Before", f"{results_df['tai_before'].mean():.3f}")
st.metric("Avg tAI After", f"{results_df['tai_after'].mean():.3f}")
# CAI Extremes Analysis
st.subheader("🎯 CAI Performance Analysis")
# Filter out rows with NaN CAI values for analysis
valid_cai_df = results_df.dropna(subset=['cai_after'])
if len(valid_cai_df) > 0:
# Find lowest and highest CAI sequences
lowest_cai_idx = valid_cai_df['cai_after'].idxmin()
highest_cai_idx = valid_cai_df['cai_after'].idxmax()
lowest_cai_row = results_df.loc[lowest_cai_idx]
highest_cai_row = results_df.loc[highest_cai_idx]
col1, col2 = st.columns(2)
with col1:
st.markdown("**πŸ”» Lowest CAI Sequence**")
st.write(f"**Name:** {lowest_cai_row['name']}")
st.metric("CAI Score", f"{lowest_cai_row['cai_after']:.3f}")
st.metric("GC Content", f"{lowest_cai_row['gc_content_after']:.1f}%")
st.metric("tAI Score", f"{lowest_cai_row['tai_after']:.3f}")
st.metric("Length", f"{lowest_cai_row['length_after']} bp")
# Show improvement
if pd.notna(lowest_cai_row['cai_before']):
cai_improvement = lowest_cai_row['cai_after'] - lowest_cai_row['cai_before']
st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
with col2:
st.markdown("**πŸ”Ί Highest CAI Sequence**")
st.write(f"**Name:** {highest_cai_row['name']}")
st.metric("CAI Score", f"{highest_cai_row['cai_after']:.3f}")
st.metric("GC Content", f"{highest_cai_row['gc_content_after']:.1f}%")
st.metric("tAI Score", f"{highest_cai_row['tai_after']:.3f}")
st.metric("Length", f"{highest_cai_row['length_after']} bp")
# Show improvement
if pd.notna(highest_cai_row['cai_before']):
cai_improvement = highest_cai_row['cai_after'] - highest_cai_row['cai_before']
st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
# CAI Distribution Chart
st.subheader("πŸ“Š CAI Distribution")
fig = go.Figure()
fig.add_trace(go.Histogram(
x=valid_cai_df['cai_after'],
nbinsx=20,
name='Optimized CAI Scores',
marker_color='darkblue',
opacity=0.7
))
# Add vertical lines for lowest and highest
fig.add_vline(
x=lowest_cai_row['cai_after'],
line_dash="dash",
line_color="red",
annotation_text=f"Lowest: {lowest_cai_row['cai_after']:.3f}"
)
fig.add_vline(
x=highest_cai_row['cai_after'],
line_dash="dash",
line_color="green",
annotation_text=f"Highest: {highest_cai_row['cai_after']:.3f}"
)
fig.update_layout(
title="Distribution of Optimized CAI Scores",
xaxis_title="CAI Score",
yaxis_title="Number of Sequences",
height=400,
showlegend=False
)
st.plotly_chart(fig, use_container_width=True)
# GC Content Distribution Chart
st.subheader("πŸ“Š GC Content Distribution")
valid_gc_df = results_df.dropna(subset=['gc_content_after'])
if len(valid_gc_df) > 0:
lowest_gc_idx = valid_gc_df['gc_content_after'].idxmin()
highest_gc_idx = valid_gc_df['gc_content_after'].idxmax()
lowest_gc_row = results_df.loc[lowest_gc_idx]
highest_gc_row = results_df.loc[highest_gc_idx]
fig_gc = go.Figure()
fig_gc.add_trace(go.Histogram(
x=valid_gc_df['gc_content_after'],
nbinsx=20,
name='Optimized GC Content',
marker_color='teal',
opacity=0.7
))
fig_gc.add_vline(
x=lowest_gc_row['gc_content_after'],
line_dash="dash",
line_color="red",
annotation_text=f"Lowest: {lowest_gc_row['gc_content_after']:.1f}%"
)
fig_gc.add_vline(
x=highest_gc_row['gc_content_after'],
line_dash="dash",
line_color="green",
annotation_text=f"Highest: {highest_gc_row['gc_content_after']:.1f}%"
)
fig_gc.update_layout(
title="Distribution of Optimized GC Content",
xaxis_title="GC Content (%)",
yaxis_title="Number of Sequences",
height=400,
showlegend=False
)
st.plotly_chart(fig_gc, use_container_width=True)
else:
st.warning("⚠️ No valid GC content values found in the batch results.")
else:
st.warning("⚠️ No valid CAI scores found in the batch results. Check if CAI weights are properly loaded.")
# Sequence selector
seq_names = results_df['name'].tolist()
selected_seq = st.selectbox("Select a sequence to view details", seq_names)
seq_row = results_df[results_df['name'] == selected_seq].iloc[0]
st.markdown(f"### Details for: {selected_seq}")
if 'validation_message' in seq_row and 'auto-fixed' in seq_row['validation_message']:
st.info(seq_row['validation_message'])
col1, col2 = st.columns(2)
with col1:
st.markdown("**Original Sequence**")
st.text_area("Original Sequence", seq_row['original_sequence'], height=100)
st.metric("GC Content (Before)", f"{seq_row['gc_content_before']:.1f}%")
st.metric("CAI (Before)", f"{seq_row['cai_before']:.3f}")
st.metric("tAI (Before)", f"{seq_row['tai_before']:.3f}")
st.metric("Length (Before)", f"{seq_row['length_before']}")
with col2:
st.markdown("**Optimized Sequence**")
st.text_area("Optimized Sequence", seq_row['optimized_dna'], height=100)
st.metric("GC Content (After)", f"{seq_row['gc_content_after']:.1f}%")
st.metric("CAI (After)", f"{seq_row['cai_after']:.3f}")
st.metric("tAI (After)", f"{seq_row['tai_after']:.3f}")
st.metric("Length (After)", f"{seq_row['length_after']}")
# Plots for before/after GC content
st.subheader("GC Content Distribution (Before vs After)")
if len(seq_row['original_sequence']) > 150 and len(seq_row['optimized_dna']) > 150:
fig_before = create_gc_content_plot(seq_row['original_sequence'])
fig_before.update_layout(title="Before Optimization", height=300)
fig_after = create_gc_content_plot(seq_row['optimized_dna'])
fig_after.update_layout(title="After Optimization", height=300)
st.plotly_chart(fig_before, use_container_width=True)
st.plotly_chart(fig_after, use_container_width=True)
else:
st.info("Sequence(s) too short for sliding window analysis")
# Download batch results
if st.button("πŸ“₯ Download Batch Results"):
csv_data = results_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv_data,
file_name="batch_optimization_results.csv",
mime="text/csv"
)
def comparative_analysis_interface():
"""Comparative analysis interface"""
st.header("πŸ“Š Comparative Analysis")
st.markdown("**Compare optimization strategies side-by-side**")
st.info("🚧 **Coming Soon:** Compare our model against traditional methods (HFC, BFC, URC) and generate publication-quality comparative analysis.")
# Placeholder for future implementation
col1, col2 = st.columns(2)
with col1:
st.subheader("Algorithm Comparison")
st.write("β€’ ColiFormer (Our Model)")
st.write("β€’ High Frequency Choice (HFC)")
st.write("β€’ Background Frequency Choice (BFC)")
st.write("β€’ Uniform Random Choice (URC)")
with col2:
st.subheader("Comparison Metrics")
st.write("β€’ CAI Score Comparison")
st.write("β€’ tAI Score Comparison")
st.write("β€’ GC Content Analysis")
st.write("β€’ Statistical Significance Testing")
def advanced_settings_interface():
"""Advanced settings and configuration interface"""
st.header("βš™οΈ Advanced Settings")
st.markdown("**Configure advanced parameters and model settings**")
# Model configuration
st.subheader("πŸ€– Model Configuration")
col1, col2 = st.columns(2)
with col1:
st.write("**Current Model Status:**")
if st.session_state.model:
model_type = getattr(st.session_state, 'model_type', 'unknown')
st.success(f"βœ… Model loaded: {model_type}")
st.write(f"Device: {st.session_state.device}")
else:
st.warning("⚠️ Model not loaded")
with col2:
st.write("**Model Information:**")
st.write("β€’ Architecture: BigBird Transformer")
st.write("β€’ Parameters: 89.6M")
st.write("β€’ Training: 4,316 high-CAI E. coli genes")
st.write("β€’ Performance: +5.1% CAI, +8.6% tAI")
# Performance tuning
st.subheader("⚑ Performance Tuning")
# Memory management
col1, col2 = st.columns(2)
with col1:
if st.button("🧹 Clear Cache"):
st.cache_data.clear()
st.success("Cache cleared successfully")
with col2:
if st.button("πŸ”„ Reload Model"):
st.session_state.model = None
st.session_state.tokenizer = None
st.rerun()
# System information
st.subheader("πŸ’» System Information")
import torch
col1, col2, col3 = st.columns(3)
with col1:
st.write("**PyTorch:**")
st.write(f"Version: {torch.__version__}")
st.write(f"CUDA Available: {torch.cuda.is_available()}")
with col2:
st.write("**Device:**")
st.write(f"Current: {st.session_state.device}")
if torch.cuda.is_available():
st.write(f"GPU: {torch.cuda.get_device_name()}")
with col3:
st.write("**Memory:**")
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
st.write(f"GPU Memory: {gpu_memory:.1f} GB")
# Footer
st.markdown("---")
st.markdown("**ColiFormer **")
st.markdown("πŸš€ Built for Nature Communications-level research β€’ Targeting >20% CAI improvements β€’ Aug 2025 experimental validation")
if __name__ == "__main__":
main()