bear_fastai / app.py
SAwaida
Revert to old file
7d19f9d
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner('bears.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Bear Classifier"
description = "A bear classifier trained on internet image dataset with fastai."
article="<p style='text-align: center'>Thank you</p>"
examples = ['black_bear_example.jpg']
enable_queue=True
gr.Interface(fn=predict,inputs=gr.Image(shape=(512, 512)),
outputs=gr.Label(num_top_classes=3),title=title,
description=description,article=article,examples=examples).launch(
enable_queue=enable_queue)