|
from typing import List, Dict
|
|
import requests
|
|
import numpy as np
|
|
from elasticsearch import Elasticsearch
|
|
import urllib3
|
|
from dotenv import load_dotenv
|
|
import os
|
|
|
|
load_dotenv()
|
|
|
|
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
|
|
|
class VectorStore:
|
|
def __init__(self):
|
|
|
|
self.es = Elasticsearch(
|
|
"https://samlax12-elastic.hf.space",
|
|
basic_auth=("elastic", os.getenv("PASSWORD")),
|
|
verify_certs=False,
|
|
request_timeout=30,
|
|
|
|
headers={"accept": "application/vnd.elasticsearch+json; compatible-with=8"},
|
|
)
|
|
self.api_key = os.getenv("API_KEY")
|
|
self.api_base = os.getenv("BASE_URL")
|
|
|
|
def get_embedding(self, text: str) -> List[float]:
|
|
"""调用SiliconFlow的embedding API获取向量"""
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
response = requests.post(
|
|
f"{self.api_base}/embeddings",
|
|
headers=headers,
|
|
json={
|
|
"model": "BAAI/bge-m3",
|
|
"input": text
|
|
}
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
return response.json()["data"][0]["embedding"]
|
|
else:
|
|
raise Exception(f"Error getting embedding: {response.text}")
|
|
|
|
def store(self, documents: List[Dict], index_name: str) -> None:
|
|
"""将文档存储到 Elasticsearch"""
|
|
|
|
if not self.es.indices.exists(index=index_name):
|
|
self.create_index(index_name)
|
|
|
|
|
|
try:
|
|
response = self.es.count(index=index_name)
|
|
last_id = response['count'] - 1
|
|
if last_id < 0:
|
|
last_id = -1
|
|
except Exception as e:
|
|
print(f"获取文档数量时出错,假设为-1: {str(e)}")
|
|
last_id = -1
|
|
|
|
|
|
bulk_data = []
|
|
for i, doc in enumerate(documents, start=last_id + 1):
|
|
|
|
vector = self.get_embedding(doc['content'])
|
|
|
|
|
|
bulk_data.append({
|
|
"index": {
|
|
"_index": index_name,
|
|
"_id": f"doc_{i}"
|
|
}
|
|
})
|
|
|
|
|
|
doc_data = {
|
|
"content": doc['content'],
|
|
"vector": vector,
|
|
"metadata": {
|
|
"file_name": doc['metadata'].get('file_name', '未知文件'),
|
|
"source": doc['metadata'].get('source', ''),
|
|
"page": doc['metadata'].get('page', ''),
|
|
"img_url": doc['metadata'].get('img_url', '')
|
|
}
|
|
}
|
|
bulk_data.append(doc_data)
|
|
|
|
|
|
if bulk_data:
|
|
response = self.es.bulk(operations=bulk_data, refresh=True)
|
|
if response.get('errors'):
|
|
print("批量写入时出现错误:", response)
|
|
|
|
def get_files_in_index(self, index_name: str) -> List[str]:
|
|
"""获取索引中的所有文件名"""
|
|
try:
|
|
response = self.es.search(
|
|
index=index_name,
|
|
body={
|
|
"size": 0,
|
|
"aggs": {
|
|
"unique_files": {
|
|
"terms": {
|
|
"field": "metadata.file_name",
|
|
"size": 1000
|
|
}
|
|
}
|
|
}
|
|
}
|
|
)
|
|
|
|
files = [bucket['key'] for bucket in response['aggregations']['unique_files']['buckets']]
|
|
return sorted(files)
|
|
except Exception as e:
|
|
print(f"获取文件列表时出错: {str(e)}")
|
|
return []
|
|
|
|
def create_index(self, index_name: str):
|
|
"""创建 Elasticsearch 索引"""
|
|
settings = {
|
|
"mappings": {
|
|
"properties": {
|
|
"content": {"type": "text"},
|
|
"vector": {
|
|
"type": "dense_vector",
|
|
"dims": 1024
|
|
},
|
|
"metadata": {
|
|
"properties": {
|
|
"file_name": {
|
|
"type": "keyword",
|
|
"ignore_above": 256
|
|
},
|
|
"source": {
|
|
"type": "keyword"
|
|
},
|
|
"page": {
|
|
"type": "keyword"
|
|
},
|
|
"img_url": {
|
|
"type": "keyword",
|
|
"ignore_above": 2048
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if self.es.indices.exists(index=index_name):
|
|
self.es.indices.delete(index=index_name)
|
|
|
|
self.es.indices.create(index=index_name, body=settings)
|
|
|
|
def delete_index(self, index_id: str) -> bool:
|
|
"""删除一个索引"""
|
|
try:
|
|
if self.es.indices.exists(index=index_id):
|
|
self.es.indices.delete(index=index_id)
|
|
return True
|
|
return False
|
|
except Exception as e:
|
|
print(f"删除索引时出错: {str(e)}")
|
|
return False
|
|
|
|
def delete_document(self, index_id: str, file_name: str) -> bool:
|
|
"""根据文件名删除文档"""
|
|
try:
|
|
response = self.es.delete_by_query(
|
|
index=index_id,
|
|
body={
|
|
"query": {
|
|
"term": {
|
|
"metadata.file_name": file_name
|
|
}
|
|
}
|
|
},
|
|
refresh=True
|
|
)
|
|
return True
|
|
except Exception as e:
|
|
print(f"删除文档时出错: {str(e)}")
|
|
return False |