File size: 22,392 Bytes
13b0261
 
 
 
 
 
 
 
 
 
 
 
7dcb6bb
d8113b7
13b0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5663cc4
4a5a174
 
 
 
 
 
 
0fa7faa
592a687
2a2919c
 
4a5a174
 
13b0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ff433
13b0261
 
 
 
 
 
 
 
413f5b2
 
844fc6d
5d622a9
acd6f25
87abc68
13b0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87abc68
13b0261
87abc68
5d622a9
13b0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77d0fb
8212ba0
f77d0fb
e510375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7040102
1a4e328
8212ba0
13b0261
 
8212ba0
 
0fa7faa
8212ba0
7040102
8212ba0
 
 
 
 
 
0fa7faa
8212ba0
7040102
8212ba0
 
 
 
 
 
0fa7faa
8212ba0
7040102
8212ba0
fd422da
 
 
 
 
0fa7faa
fd422da
7040102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd422da
8212ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b0261
 
 
87abc68
13b0261
 
 
 
 
 
b491786
 
13b0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
import time 
import cv2
from domain_space import load_domain_space, create_plot, create_slicer_update, update_dropdown
import yaml

# Unique phase elements

# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write

# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"

scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
                   'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
                   'PROPERTY: HV': (107.0, 1183.0),
                   'PROPERTY: YS (MPa)': (62.0, 3416.0)}

input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
                 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
                 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
                                              'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
                                              'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
                                              'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
                                              'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
                                              'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
                                              'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
                                              'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
                                              'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
                                              'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
                 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}

unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']

input_cols = {
    "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
                               "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
    "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
                                   "Choose between Single (S), Multiphase (M) and other (OTHER)",
    "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
                               "Choose between BCC, FCC and other ",
    "PROPERTY: Processing method": "(PROPERTY: Processing method) "
                                   "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
    "PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
                                "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}

with open("conf_test_uncertainty.yaml", "rb") as file:
    conf = yaml.safe_load(file)

space_dict = conf["domain_space"]["uncertainty_space_dict"]
explored_dict = conf["domain_space"]["explored_space_dict"]

df_synth = load_domain_space(conf["domain_space"]["design_space_path"])

plot_fn_uncertainty, update_plot_fn_uncertainty = create_plot(df_synth, explored_dict, target="uncertainty")
plot_fn_hardness, update_plot_fn_hardness = create_plot(df_synth, explored_dict, target="y_pred")

update_slider_fn = create_slicer_update(space_dict)


def process_microstructure(list_phases):
    permutations = list(itertools.permutations(list_phases))
    permutations_strings = [str('+'.join(list(e))) for e in permutations]
    for e in permutations_strings:
        if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
            return e
    return 'OTHER'
    
def write_logs(message, message_type="Prediction"):
    """
    Write logs
    """
    with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
        with open(dataset_path, "a") as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
                writer.writerow(
                    {"name": message_type, "message": message, "time": str(datetime.now())}
                )
    return 
    
def predict(x, request: gr.Request):
    """
    Predict the hardness and yield strength using the ML model. Input data is a dataframe
    """
    loaded_model = tf.keras.models.load_model("hardness.h5")
    print("summary is", loaded_model.summary())
    x = x.replace("", 0)
    x = np.asarray(x).astype("float32")
    y = loaded_model.predict(x)
    y_hardness = y[0][0]
    y_ys = y[0][1]
    minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
    minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
    print("Prediction is ", y)
    if request is not None:   # Verify if request is not None (when building the app the first request is None)
        message = f"{request.username}_{request.client.host}"
        print("MESSAGE")
        print(message)
        res = write_logs(message)
    interpret_fig = utils.interpret(x)
    return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
            round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 4.8, interpret_fig)


def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
    """
    Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
    """
    input_tuple = (in1, in2, in3, in4, in5)
    formula = utils.normalize_and_alphabetize_formula(in1)
    density = utils.calculate_density(formula)
    young_modulus = utils.calculate_youngs_modulus(formula)
    input_dict = {}

    in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
    input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
    
    in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
    input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
    
    in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
    input_dict['PROPERTY: Processing method'] = [int(in4)]

    in5 = process_microstructure(in5)
    in5 = input_mapping['PROPERTY: Microstructure'][in5]
    input_dict['PROPERTY: Microstructure'] = [int(in5)]
    
    density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
    density = (density-density_scaling_factors[0])/(
        density_scaling_factors[1]-density_scaling_factors[0])
    input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]

    
    ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
    young_modulus = (young_modulus-ym_scaling_factors[0])/(
        ym_scaling_factors[1]-ym_scaling_factors[0])
    input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]

    input_df = pd.DataFrame.from_dict(input_dict)
    one_hot = utils.turn_into_one_hot(input_df, input_mapping)
    print("One hot columns are ", one_hot.columns)
    return predict(one_hot, request)


def upload_csv(x):
    print(x)
    print(x.name)
    df = pd.read_csv(x.name, sep=",")
    print("Input dataframe")
    print(df.shape)
    df.drop(columns=["Unnamed: 0"], inplace=True)
    cols = list(df.columns)
    return df, gr.update(choices=cols)


def train_model(x, target_cols):
    print("Selected target columns")
    print(target_cols)
    time.sleep(6)
    # performance_plot = cv2.imread("model_performance.png")
    performance_plot = cv2.imread("predictions_ground_truth.png")
    metrics = pd.DataFrame([[0.05, 0.017]], columns=["RMSE", "MAPE"])
    next_df = x.sample(n=5, random_state=12)
    next_df.drop(columns=target_cols, inplace=True)
    return "0.017", performance_plot, next_df




example_inputs = ['Al0.25 Co1 Fe1 Ni1', 'S', 'BCC', 'CAST', ['B2', 'Sec.']]

css_styling = """#submit {background: #1eccd8} 
#submit:hover {background: #a2f1f6} 
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""

light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
                                c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
                                c200="#a1c6db", # Component borders
                                c300="#FFFFFF", # 
                                c400="#e4f3fa", # Footer text
                                c500="#0c1538", # Text of component headers in light mode only
                                c600="#a1c6db", # Top corner of button in dark mode
                                c700="#475383", # Button text in light mode + component borders in dark mode
                                c800="#0c1538", # Markdown text in light mode
                                c900="#a1c6db", # Background of dataframe - dark mode
                                c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path  = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""


with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
    #gr.HTML(html)
    gr.Markdown("# <p style='text-align: center;'>Predict your alloy's hardness and yield strength</p>")
    gr.Markdown("This AI model provides the estimation of hardness and yield strength based on the input alloy description")
    with gr.Tab(label="Model adaptation"):
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Your input files")
                input_file = gr.File(label="Your input files", file_count="single", elem_id="input_files")
        with gr.Row():
            clear_train_button = gr.Button("Clear")
            # upload_button = gr.Button("Upload", elem_id="submit")
            train_button = gr.Button("Train model", elem_id="submit")
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Your input csv")
                # input_image1 = gr.Image(elem_classes="input-csv")
                input_csv = gr.DataFrame(elem_classes="input-csv")
            with gr.Column():
                gr.Markdown("### Choose your target properties")
                target_columns = gr.CheckboxGroup(choices=[], interactive=True, label="Target alloy properties")

            with gr.Column():
                gr.Markdown("### Your model adaptation")
                output_text = gr.Textbox(label="Training results - Mean Average Percentage Error")
                output_plot = gr.Image(label="Training performance", elem_classes="output-image")
                # output_performance = gr.DataFrame(label="Model performance")
                output_next_experiments = gr.DataFrame(label="Suggested experiments to improve performance")

    with gr.Tab(label="Run your model"):
        with gr.Row():
            clear_button = gr.Button("Clear")
            prediction_button = gr.Button("Predict", elem_id="submit")
        with gr.Row():
            with gr.Column(scale=0.25, min_width=80):
                gr.Markdown("### Your alloy's characteristics")
                input_formula = gr.Textbox(
                    lines=2, placeholder=input_cols["PROPERTY: Alloy formula"], label=input_cols["PROPERTY: Alloy formula"]
                )
                input_phase = gr.Dropdown(
                    choices=list(input_mapping["PROPERTY: Single/Multiphase"].keys()),
                    label=input_cols["PROPERTY: Single/Multiphase"],
                )
                input_bccfcc = gr.Dropdown(
                    choices=list(input_mapping["PROPERTY: BCC/FCC/other"].keys()),
                    label=input_cols["PROPERTY: BCC/FCC/other"],
                )
                input_processing = gr.Dropdown(
                    choices=list(input_mapping["PROPERTY: Processing method"].keys()),
                    label=input_cols["PROPERTY: Processing method"],
                )
                input_microstructure = gr.CheckboxGroup(
                    choices=unique_phase_elements, #list(input_mapping["PROPERTY: Microstructure"].keys()),
                    label=input_cols["PROPERTY: Microstructure"],
                )
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Your alloy's hardness (HV)")
                        output_hardness = gr.Text(label="Hardness (in HV)")
                        output_hardness_uncertainty = gr.Text(label="Hardness uncertainty (%)")
                    with gr.Column():
                        gr.Markdown("### Your alloy's yield strength (MPa)")
                        output_ys = gr.Text(label="Yield Strength (MPa)")
                        output_ys_uncertainty = gr.Text(label="Yield strength uncertainty (%)")
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            gr.Markdown("### Interpretation of hardness prediction")
                            gr.Markdown("### Interpretation of yield strength prediction")
                        with gr.Row():
                            output_interpretation = gr.Plot(label="Interpretation")
                gr.Markdown("### Explore your alloy design space")
                with gr.Row():
                    
                    elem1 = "%Cr"
                    elem2 = "%V"
                    elem3 = "%Mo"
                    with gr.Row():
                        input_cols_gradio = ["%C", "%Co", "%Cr", "%V", "%Mo", "%W", "Temperature_C"]
                        input_list1 = input_cols_gradio.copy()
                        input_list1.remove(elem2)
                        input_list1.remove(elem3)
                        dropdown_1 = gr.Dropdown(label="Fix element 1", choices=input_list1, value=elem1)
                        input_slicer_1 = gr.Slider(
                            label=elem1,
                            minimum=space_dict[elem1]["min"],
                            maximum=space_dict[elem1]["max"],
                            value=space_dict[elem1]["value"],
                            step=space_dict[elem1]["step_display"],
                        )
                    with gr.Row():
                        input_list2 = input_cols_gradio.copy()
                        input_list2.remove(elem1)
                        input_list2.remove(elem3)
                        dropdown_2 = gr.Dropdown(label="Fix element 2", choices=input_list2, value=elem2)
                        input_slicer_2 = gr.Slider(
                            label=elem2,
                            minimum=space_dict[elem2]["min"],
                            maximum=space_dict[elem2]["max"],
                            value=space_dict[elem2]["value"],
                            step=space_dict[elem2]["step_display"],
                        )
                    with gr.Row():
                        input_list3 = input_cols_gradio.copy()
                        input_list3.remove(elem1)
                        input_list3.remove(elem2)
                        dropdown_3 = gr.Dropdown(label="Fix element 3", choices=input_list3, value=elem3)
                        input_slicer_3 = gr.Slider(
                            label=elem3,
                            minimum=space_dict[elem3]["min"],
                            maximum=space_dict[elem3]["max"],
                            value=space_dict[elem3]["value"],
                            step=space_dict[elem3]["step_display"],
                        )
    
                with gr.Column():
                    gr.Markdown("### Your design space")
                    output_plot_space_hardness = gr.Plot(type="plotly")
                    output_plot_space_uncertainty = gr.Plot(type="plotly")

        with gr.Row():
            gr.Examples([example_inputs], [input_formula, input_phase, input_bccfcc, input_processing, input_microstructure])
            
    input_slicer_1.change(
        fn=update_plot_fn_uncertainty,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_uncertainty],
        show_progress=True,
        queue=True,
        every=0.5,
    )

    input_slicer_2.change(
        fn=update_plot_fn_uncertainty,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_uncertainty],
        show_progress=True,
        queue=True,
        # every=2,
    )

    input_slicer_3.change(
        fn=update_plot_fn_uncertainty,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_uncertainty],
        show_progress=True,
        queue=True,
        # every=2,
    )

    output_hardness.change(
        fn=update_plot_fn_uncertainty,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_uncertainty],
        show_progress=True,
        queue=True,
        # every=2,
    )

    input_slicer_1.change(
        fn=update_plot_fn_hardness,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_hardness],
        show_progress=True,
        queue=True,
        every=0.5,
    )

    input_slicer_2.change(
        fn=update_plot_fn_hardness,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_hardness],
        show_progress=True,
        queue=True,
        # every=2,
    )

    input_slicer_3.change(
        fn=update_plot_fn_hardness,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_hardness],
        show_progress=True,
        queue=True,
        # every=2,
    )

    output_hardness.change(
        fn=update_plot_fn_hardness,
        inputs=[dropdown_1, input_slicer_1, dropdown_2, input_slicer_2, dropdown_3, input_slicer_3],
        outputs=[output_plot_space_hardness],
        show_progress=True,
        queue=True,
        # every=2,
    )

    # Update the choices in the dropdown based on the elements selected
    # dropdown_1.change(fn=update_dropdown, inputs=[dropdown_1], outputs=[dropdown_2, dropdown_3], show_progress=True)
    # dropdown_2.change(fn=update_dropdown, inputs=[dropdown_2], outputs=[dropdown_1, dropdown_3], show_progress=True)
    # dropdown_2.change(fn=update_dropdown, inputs=[dropdown_3], outputs=[dropdown_1, dropdown_2], show_progress=True)
    dropdown_1.change(
        fn=update_dropdown,
        inputs=[dropdown_1, dropdown_2, dropdown_3],
        outputs=[dropdown_1, dropdown_2, dropdown_3],
        show_progress=True,
    )
    dropdown_2.change(
        fn=update_dropdown,
        inputs=[dropdown_1, dropdown_2, dropdown_3],
        outputs=[dropdown_1, dropdown_2, dropdown_3],
        show_progress=True,
    )
    dropdown_3.change(
        fn=update_dropdown,
        inputs=[dropdown_1, dropdown_2, dropdown_3],
        outputs=[dropdown_1, dropdown_2, dropdown_3],
        show_progress=True,
    )

    # Update the slider name based on the choice of the dropdow
    dropdown_1.change(fn=update_slider_fn, inputs=[dropdown_1], outputs=[input_slicer_1])
    dropdown_2.change(fn=update_slider_fn, inputs=[dropdown_2], outputs=[input_slicer_2])
    dropdown_3.change(fn=update_slider_fn, inputs=[dropdown_3], outputs=[input_slicer_3])
    
            
    train_button.click(
        fn=train_model,
        inputs=[input_csv, target_columns],
        outputs=[output_text, output_plot, output_next_experiments],
        show_progress=True,
    )

    clear_train_button.click(
        lambda x: [gr.update(value=None)] * 6,
        [],
          # [input_file, input_csv, target_columns, output_text, output_plot, output_performance],
        [input_file, input_csv, target_columns, output_text, output_plot],
    )

    # upload_button.click(
    #     fn=upload_csv,
    #     inputs=[input_file],
    #     outputs=[input_csv, target_columns],
    #     show_progress=True,
    #     # every=2,
    # )
    input_file.change(
        fn=upload_csv,
        inputs=[input_file],
        outputs=[input_csv, target_columns],
        show_progress=True,
        # every=2,
    )

    prediction_button.click(
        fn=predict_from_tuple,
        inputs=[input_formula, input_phase, input_bccfcc, input_processing, input_microstructure],
        outputs=[
            output_hardness,
            output_hardness_uncertainty,
            output_ys, 
            output_ys_uncertainty, 
            output_interpretation,
            
        ],
        show_progress=True,
    )
    clear_button.click(
        lambda x: [gr.update(value=None)] * 10,
        [],
        [
            input_formula,
            input_phase,
            input_bccfcc,
            input_processing,
            input_microstructure,
            output_hardness,
            output_hardness_uncertainty,
            output_ys,
            output_ys_uncertainty,
            output_interpretation,
        ],
    )


if __name__ == "__main__":
    demo.queue(concurrency_count=2)
    demo.launch()