bndl commited on
Commit
4a2ab4d
·
1 Parent(s): 04a60b4

Update template_gradio_interface.py

Browse files
Files changed (1) hide show
  1. template_gradio_interface.py +3 -32
template_gradio_interface.py CHANGED
@@ -14,33 +14,7 @@ import yaml
14
  # import time
15
  # import cv2
16
  # from prediction_coatings import predict
17
-
18
-
19
- def predict(
20
- model_path,
21
- data,
22
- encoder,
23
- minmax_scaler_inputs,
24
- minmax_scaler_targets,
25
- categorical_columns,
26
- numerical_columns,
27
- target_columns,
28
- explainer,
29
- use_in_gradio=False,
30
- ):
31
- # model = tf.keras.models.load_model(model_path)
32
- # if use_in_gradio:
33
- # data = encode_categorical(data, categorical_columns, encoder=one_hot_scaler, fit=False)
34
- # data = scale_numerical(data, numerical_columns, scaler=minmax_scaler_inputs, fit=False)
35
- # return model.predict(data), data.columns, explainer.shap_values(data[-10:])
36
- return 34, 10, 45, 10, None
37
-
38
-
39
- def unpickle_file(path):
40
- with open(path, "rb") as file:
41
- unpickler = pickle.Unpickler(file)
42
- unpickled_file = unpickler.load()
43
- return unpickled_file
44
 
45
 
46
  def call_predict(inference_dict, cols_order):
@@ -48,11 +22,6 @@ def call_predict(inference_dict, cols_order):
48
  Encapsulates the predict function from utils to pass the config, and to put the data in the right format
49
  """
50
 
51
- categorical_columns = ""
52
- numerical_columns = ""
53
- target_columns = ""
54
-
55
-
56
  scaler_inputs = unpickle_file(inference_dict["inference"]["scaler_inputs_path"])
57
  scaler_targets = unpickle_file(inference_dict["inference"]["scaler_targets_path"])
58
  encoder = unpickle_file(inference_dict["inference"]["encoder_path"])
@@ -67,6 +36,8 @@ def call_predict(inference_dict, cols_order):
67
  df = pd.DataFrame([x_list], columns=cols_order)
68
  print(df.shape)
69
 
 
 
70
 
71
  y_pred, _, shap_values = predict(inference_dict["inference"]["model_path"], df_preprocessed, explainer)
72
 
 
14
  # import time
15
  # import cv2
16
  # from prediction_coatings import predict
17
+ from utils import predict, unpickle_file, scale_numertical, encode_categorical
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
 
20
  def call_predict(inference_dict, cols_order):
 
22
  Encapsulates the predict function from utils to pass the config, and to put the data in the right format
23
  """
24
 
 
 
 
 
 
25
  scaler_inputs = unpickle_file(inference_dict["inference"]["scaler_inputs_path"])
26
  scaler_targets = unpickle_file(inference_dict["inference"]["scaler_targets_path"])
27
  encoder = unpickle_file(inference_dict["inference"]["encoder_path"])
 
36
  df = pd.DataFrame([x_list], columns=cols_order)
37
  print(df.shape)
38
 
39
+ df_preprocessed = scale_numertical(df, numerical_columns, scaler=scaler_inputs, fit=False)
40
+ df_preprocessed = encode_categorical(df_preprocessed, categorical_columns, encoder=encoder, fit=False)
41
 
42
  y_pred, _, shap_values = predict(inference_dict["inference"]["model_path"], df_preprocessed, explainer)
43