File size: 18,682 Bytes
422d8d6
 
 
 
 
 
 
84153bd
2cd9a3f
422d8d6
 
 
 
 
 
 
 
 
 
 
660c863
422d8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157a7b8
6e19b58
157a7b8
6e19b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422d8d6
 
 
 
 
 
 
 
 
 
6e19b58
422d8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c83a9
df5431f
422d8d6
 
 
fd2aa28
422d8d6
 
9d60b86
422d8d6
 
9d60b86
422d8d6
 
 
 
 
 
4128d83
422d8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f874cee
422d8d6
 
9d60b86
422d8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d60b86
 
422d8d6
 
 
 
 
eef0788
422d8d6
 
caee59f
422d8d6
 
 
 
 
9d60b86
422d8d6
 
 
 
 
 
 
9d60b86
422d8d6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import GPy
import GPyOpt
import pickle
import tensorflow as tf
import numpy as np
import pandas as pd
from preprocessing_utils import encode_categorical, scale_numerical, fill_nans
import os
import gradio as gr

# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write

# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"


# Input parameters
model_path = "model_coatings.h5"
model = tf.keras.models.load_model(model_path)

df_columns = ['Binder', 'NMs_Type', 'Primary_Size (nm)', 'NM-Shape', 'Substrate',
              'Microorganism ', 'Duration (h)', 'Washing_cycles', 'Reduction_%',
              'Concetration (µg/mL)', 'NPs_Synthesis_method', 'Application method\n',
              'Evalutation_Standard', 'Evalutation_Method', 'Durability test',
              'Washing_Detergent', 'Washing_Temp']

targets = ["Reduction_%"]
numerical_columns = [#'Fabric diameter for antibacterial evaluation\n(cm)',
                     'Primary_Size (nm)', 'Duration (h)', 'Washing_cycles', 'Reduction_%',
                     'Concetration (µg/mL)']

categorical_columns = [column for column in df_columns if column not in numerical_columns]

numerical_columns.remove(targets[0])

# Unpickle files

with open("one_hot_scaler.pickle", "rb") as file:
    unpickler = pickle.Unpickler(file)
    one_hot_scaler = unpickler.load()

with open("minmax_scaler_targets.pickle", "rb") as file:
    unpickler = pickle.Unpickler(file)
    minmax_scaler_targets = unpickler.load()

with open("minmax_scaler_inputs.pickle", "rb") as file:
    unpickler = pickle.Unpickler(file)
    minmax_scaler_inputs = unpickler.load()

with open("one_hot_scaler.pickle", "rb") as file:
    unpickler = pickle.Unpickler(file)
    one_hot_scaler = unpickler.load()

test_data_columns = ['Binder_ADA',
 'Binder_Alginates',
 'Binder_Anatase',
 'Binder_Butane tetracarboxylic',
 'Binder_CDA',
 'Binder_CF4 plasma',
 'Binder_CTAB',
 'Binder_Carboxylic acid ',
 'Binder_Carboxymethyl chitosan (CMCTS)',
 'Binder_Cellulase',
 'Binder_Chitosan',
 'Binder_Citric acid ',
 'Binder_Copper phosphide',
 'Binder_Date seed extract',
 'Binder_Dendrimer',
 'Binder_HSDA',
 'Binder_HY',
 'Binder_Mesosilver',
 'Binder_Multi-amino compound (RSD-NH2)',
 'Binder_NIDA',
 'Binder_Nano-clay',
 'Binder_Organosilicon',
 'Binder_PEG',
 'Binder_PS-b-PAA',
 'Binder_PUBK (hydrophilic aliphatic polyester-urethanes)',
 'Binder_Poly(quaternary ammonium salt-epoxy)',
 'Binder_Printofix® Binder MTB EG liquid',
 'Binder_Rutile',
 'Binder_SDS',
 'Binder_Seaweed',
 'Binder_Silane ',
 'Binder_Silica',
 'Binder_Silpure',
 'Binder_Sodium citrate',
 'Binder_Starch',
 'Binder_TX-100',
 'Binder_Thioglycolic acid (TGA)',
 'Binder_hexadecyltrimethoxysilane(HDTMS)',
 'Binder_hexamethyltriethylenetetramine',
 'Binder_poly-hydroxy-amino methyl silicone',
 'Binder_polyamide network polymer (PNP)',
 'NMs_Type_Ag',
 'NMs_Type_Au',
 'NMs_Type_CS',
 'NMs_Type_Ce',
 'NMs_Type_Ce_ZnO',
 'NMs_Type_Co',
 'NMs_Type_CuO',
 'NMs_Type_CuO_TiO2',
 'NMs_Type_Fe3O4',
 'NMs_Type_Fe3O4_ZnO',
 'NMs_Type_Mn',
 'NMs_Type_SA_TSA',
 'NMs_Type_SiO2_Ag_Cu',
 'NMs_Type_TiO2',
 'NMs_Type_ZnO',
 'NMs_Type_ZnO_Cs',
 'NMs_Type_ZrO2',
 'NM-Shape_Crystalline',
 'NM-Shape_Disc',
 'NM-Shape_Ellipsoidal',
 'NM-Shape_Hexagonal',
 'NM-Shape_Hierarchical',
 'NM-Shape_Irregular',
 'NM-Shape_Nanotube',
 'NM-Shape_Nanowire',
 'NM-Shape_Polygonal',
 'NM-Shape_Prism',
 'NM-Shape_Rod ',
 'NM-Shape_Spherical',
 'NM-Shape_rectangle',
 'Substrate_Bamboo',
 'Substrate_Cotton',
 'Substrate_Cotton_Polyester',
 'Substrate_Denim',
 'Substrate_PET',
 'Substrate_Polyamide',
 'Substrate_Polyester',
 'Substrate_Silk',
 'Substrate_Viscose',
 'Substrate_Wool',
 'Substrate_Wool_Polyester',
 'Substrate_cotton',
 'Microorganism _Aci_baumannii',
 'Microorganism _Alt_brassicicola',
 'Microorganism _Asp_niger',
 'Microorganism _Bac_subtilis',
 'Microorganism _C_albicans',
 'Microorganism _E_coli',
 'Microorganism _Enter_faecalis',
 'Microorganism _Fus_oxysporum',
 'Microorganism _K_aerogens',
 'Microorganism _Kle_pneumoniae',
 'Microorganism _MRSA',
 'Microorganism _Mi_canis',
 'Microorganism _Pse_aeruginosa',
 'Microorganism _S_aureus',
 'Microorganism _S_epidermis',
 'Microorganism _S_pyogenes',
 'Microorganism _Sal_typhimurium',
 'Microorganism _Tric_mentagraphytes',
 'NPs_Synthesis_method_Bio synthesis',
 'NPs_Synthesis_method_Biosythesis ',
 'NPs_Synthesis_method_Degradation',
 'NPs_Synthesis_method_Dip_coated_Temp curated_Ultrasound',
 'NPs_Synthesis_method_Not_applicable',
 'NPs_Synthesis_method_Photochemical Reduction',
 'NPs_Synthesis_method_Supplied',
 'NPs_Synthesis_method_Wet chemical reduced',
 'NPs_Synthesis_method_Wet chemistry',
 'NPs_Synthesis_method_biosynthesis-green',
 'NPs_Synthesis_method_ex situ synthesis',
 'NPs_Synthesis_method_fungal process (biosynthesis)_green synthesis',
 'NPs_Synthesis_method_green synthesis',
 'NPs_Synthesis_method_in situ',
 'NPs_Synthesis_method_in situ  synthesis',
 'NPs_Synthesis_method_in situ biosythesis',
 'NPs_Synthesis_method_in situ desposition (alkalization and deposition)',
 'NPs_Synthesis_method_in situ microwave irradiation',
 'NPs_Synthesis_method_in situ reduction',
 'NPs_Synthesis_method_in situ sol gel immersion',
 'NPs_Synthesis_method_in situ sol–gel method',
 'NPs_Synthesis_method_in situ synthesis',
 'NPs_Synthesis_method_in situ synthesized',
 'NPs_Synthesis_method_in situ ultrasound irradiation',
 'NPs_Synthesis_method_ionic gelation',
 'NPs_Synthesis_method_nebulize',
 'NPs_Synthesis_method_reducing',
 'NPs_Synthesis_method_reduction in situ',
 'NPs_Synthesis_method_reduction of celluloce in viscose',
 'NPs_Synthesis_method_reverse micellar cores',
 'NPs_Synthesis_method_sol gel',
 'NPs_Synthesis_method_sol-gel',
 'NPs_Synthesis_method_sonication',
 'NPs_Synthesis_method_sonochemical',
 'NPs_Synthesis_method_ultrasound irradiation',
 'NPs_Synthesis_method_wet chemical method',
 'NPs_Synthesis_method_wet chemistry',
 'Application method\n_ exhaustion and Pad_squeeze_dry',
 'Application method\n_Dip coating',
 'Application method\n_Dip coating and shaking',
 'Application method\n_Dip padding and microwave irradiation',
 'Application method\n_Dip-coating and Ultrasound irradiation',
 'Application method\n_Dip_coating',
 'Application method\n_Exhaust dyeing',
 'Application method\n_Grafting Wet chemical ',
 'Application method\n_Immersion',
 'Application method\n_In situ Immersion',
 'Application method\n_In situ dip-coating',
 'Application method\n_Mist',
 'Application method\n_Pad-Dry-Cure ',
 'Application method\n_Pad-Dry-Cure and Dip coating',
 'Application method\n_Pad-dry-cure',
 'Application method\n_Padding',
 'Application method\n_Pre-alkalization/sorption',
 'Application method\n_Sonochemical',
 'Application method\n_Sonochemical throwingstones',
 'Application method\n_Sonochemical/Roll to roll ',
 'Application method\n_Sonochemical/Ultrasonic irradiation',
 'Application method\n_Sonochemical/ultrasonic transducer',
 'Application method\n_Sorption',
 'Application method\n_Top-coating with Pericoat',
 'Application method\n_Ultrasonic irradiation',
 'Application method\n_Ultrasonic-mediated dip coating',
 'Application method\n_Ultrasound irradiation',
 'Application method\n_Wet-on-wet padding',
 'Application method\n_Wetting-Immersion',
 'Application method\n_Wetting-Immersion or spraying',
 'Application method\n_Wetting-Spraying',
 'Application method\n_direct multi-layer coating with a socalled\nair blade',
 'Application method\n_pad-dry-cure',
 'Application method\n_plasma jet',
 'Application method\n_ultrasonic ',
 'Evalutation_Standard_AATCC_100',
 'Evalutation_Standard_AATCC_147',
 'Evalutation_Standard_AATCC_147_ISO_20645',
 'Evalutation_Standard_AATCC_30',
 'Evalutation_Standard_ASTME_2149',
 'Evalutation_Standard_ASTM_2180',
 'Evalutation_Standard_GB_T_20944_AATCC_61',
 'Evalutation_Standard_ISO_20645',
 'Evalutation_Standard_ISO_20743',
 'Evalutation_Method_Agar_diffusion',
 'Evalutation_Method_Dyn_shake',
 'Durability test_ Memeret shaker',
 'Durability test_AATCC 124',
 'Durability test_AATCC 61',
 'Durability test_AATCC standard wash machine',
 'Durability test_Boiled',
 'Durability test_GB/T 20944.3-2008(China)',
 'Durability test_Hand washes',
 'Durability test_Home laundering machine',
 'Durability test_Home laundry washing',
 'Durability test_Home/commercial laundering',
 'Durability test_IS 687:1979',
 'Durability test_ISO 105 CO3-1982',
 'Durability test_ISO 105-C014:1989',
 'Durability test_ISO 105-C06: 2010',
 'Durability test_ISO 105-C06:1994',
 'Durability test_ISO 105-C10:2006',
 'Durability test_ISO 105-CO6-1M',
 'Durability test_ISO 105-CO6-1M ',
 'Durability test_ISO 6330 : 2000',
 'Durability test_Industrial washing machine ISO standards',
 'Durability test_Not_applicable',
 'Durability test_Ordinary washing machine',
 'Durability test_PNEN ISO 6330:2002/A1:2011',
 'Durability test_Repeated washing',
 'Durability test_UV transmission',
 'Durability test_Ultrasonic cleaner',
 'Durability test_Ultrasound bath',
 'Durability test_Washed in a bath',
 'Durability test_Washed in bath',
 'Durability test_laundering cycles',
 'Durability test_laundry cycle',
 'Durability test_laundry regimes used in hospitals',
 'Durability test_vigorous magnetic stirring',
 'Washing_Detergent_AATCC Standard Detergent WOB',
 'Washing_Detergent_AATCC WOB standard detergent',
 'Washing_Detergent_AATCC standard detergent WOB',
 'Washing_Detergent_AATCC standards specified detergent WOB',
 'Washing_Detergent_Anionic detergent',
 'Washing_Detergent_Commercial detergent',
 'Washing_Detergent_Deionized water',
 'Washing_Detergent_Distilled water',
 'Washing_Detergent_IS-I neutral soap',
 'Washing_Detergent_Na2CO3/commercial detergent',
 'Washing_Detergent_Neutral soap solution',
 'Washing_Detergent_Non-ionic detergent, Triton X-100',
 'Washing_Detergent_Nonionic detergent',
 'Washing_Detergent_Nonionic washing agent Felosan RG-N',
 'Washing_Detergent_Not_applicable',
 'Washing_Detergent_Ordinary detergent',
 'Washing_Detergent_SDC standard detergent-Sodium carbonate',
 'Washing_Detergent_Soap',
 'Washing_Detergent_Soap detergent',
 'Washing_Detergent_Sodium carbonate',
 'Washing_Detergent_Sodium carbonate and soap',
 'Washing_Detergent_Standard detergent',
 'Washing_Detergent_Tap and deionized water',
 'Washing_Detergent_Tap water',
 'Washing_Detergent_Triton-X, non-ionic detergent',
 'Washing_Detergent_nonionic detergent',
 'Washing_Detergent_sodium dodecanesulphonate',
 'Washing_Detergent_“Li Bai” washing powder',
 'Washing_Temp_25',
 'Washing_Temp_40',
 'Washing_Temp_49',
 'Washing_Temp_50',
 'Washing_Temp_60',
 'Washing_Temp_75',
 'Washing_Temp_83',
 'Washing_Temp_92',
 'Washing_Temp_95',
 'Washing_Temp_Not_applicable',
 'Washing_Temp_Room_Temp',
 'Washing_Temp_Warm water',
 'Washing_Temp_machine set with warm\nwater',
 'Washing_Temp_warm water',
 'Primary_Size (nm)',
 'Duration (h)',
 'Washing_cycles',
 'Concetration (µg/mL)']

    
### Define space and constraints

constraints = []
dimensionality_dict = {}
one_hot_mapping = {}
for c in categorical_columns:
    dimensionality_dict[c] = 0
    one_hot_mapping[c] = []
for c in categorical_columns:
    for t in test_data_columns:
        if c in t:
            dimensionality_dict[c]+=1 
            one_hot_mapping[c].append(t)

domain = []
for column in targets:
    df_columns.remove(column)
for c in df_columns:
    if c in numerical_columns:
        domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.,1.)})
    else:
        domain.append({'name': str(c), 'type': 'categorical', 'domain': (0,1),
                       'dimensionality': dimensionality_dict[c]})



def write_logs(message, message_type="Prediction"):
    """
    Write logs
    """
    #with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
     #   with open(dataset_path, "a") as csvfile:
      #          writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
       #         writer.writerow(
        #            {"name": message_type, "message": message, "time": str(datetime.now())}
         #       )
    return 
    
def predict(x, request: gr.Request):
    """
    Predict the hardness and yield strength using the ML model. Input data is a dataframe
    """
    loaded_model = tf.keras.models.load_model("hardness_nn_graph_separate_elements.h5")
    print("summary is", loaded_model.summary())
    #x = x.replace("", 0)
    x = np.asarray(x).astype("float32")
    y = loaded_model.predict(x)
    y_hardness = y[0][0]
    y_ys = y[0][1]
    minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
    minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
    print("Prediction is ", y)
    if request is not None:   # Verify if request is not None (when building the app the first request is None)
        message = f"{request.username}_{request.client.host}"
        print("MESSAGE")
        print(message)
        res = write_logs(message)
    #interpret_fig = utils.interpret(x)
    return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
            round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)

def fit_outputs_constraints(X, antimicrobial_activity_target, request: gr.Request):
    reduction_target = 100 - int(antimicrobial_activity_target)
    reduction_target_df = pd.DataFrame({'Reduction_%':[reduction_target]})
    reduction_target_df = scale_numerical(reduction_target_df, ['Reduction_%'], scaler=minmax_scaler_targets, fit=False)
    predictions = model.predict(X)[0]   
    error = np.sqrt(np.square(predictions[0]-reduction_target_df))
    return error

def predict_inverse(antimicrobial_activity_target, request: gr.Request):

    def fit_outputs(x):
        return fit_outputs_constraints(x, antimicrobial_activity_target, request)
    opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs,            # function to optimize       
                                              domain = domain,        # box-constraints of the problem
                                              constraints = constraints,
                                              acquisition_type ='LCB',       # LCB acquisition
                                              acquisition_weight = 0.1)   # Exploration exploitation
    # it may take a few seconds
    opt.run_optimization(max_iter=10)
    opt.plot_convergence()

    opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs,            # function to optimize       
                                              domain = domain,        # box-constraints of the problem
                                              constraints = constraints,
                                              acquisition_type ='LCB',       # LCB acquisition
                                              acquisition_weight = 0.1)   # Exploration exploitation

    x_best = opt.X[np.argmin(opt.Y)]
    best_params = dict(zip(
        [el['name'] for el in domain],
        [[x] for x in x_best]))
    optimized_x = pd.DataFrame.from_dict(best_params)
    optimized_x[numerical_columns] = minmax_scaler_inputs.inverse_transform(optimized_x[numerical_columns])

    return optimized_x


example_inputs = [80]

css_styling = """#submit {background: #1eccd8} 
#submit:hover {background: #a2f1f6} 
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""

light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
                                c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
                                c200="#a1c6db", # Component borders
                                c300="#FFFFFF", # 
                                c400="#e4f3fa", # Footer text
                                c500="#0c1538", # Text of component headers in light mode only
                                c600="#a1c6db", # Top corner of button in dark mode
                                c700="#475383", # Button text in light mode + component borders in dark mode
                                c800="#0c1538", # Markdown text in light mode
                                c900="#a1c6db", # Background of dataframe - dark mode
                                c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Recommendation of optimal parameters to fulfill coating antimicrobial activity requirement"
favicon_path = "osiumai_favicon.ico"
logo_path  = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""


with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
    #gr.HTML(html)
    gr.Markdown("# <p style='text-align: center;'>Get optimal textile coating recommendation to fufill your target antimicrobial activity requirement</p>")
    gr.Markdown("Recommendation of optimal parameters to fulfill textile coating antimicrobial activity requirement")
    with gr.Row():
        clear_button = gr.Button("Clear")
        prediction_button = gr.Button("Predict", elem_id="submit")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### The target antimicrobial activity of your textile coating")
            antimicrobial_activity_target = gr.Text(label="Enter the minimum acceptable antimicrobial activity for your textile coating")

        with gr.Column():
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Optimal conditions")
                    optimal_conditions = gr.DataFrame(label="Optimal conditions")

    with gr.Row():
        gr.Examples([example_inputs], [antimicrobial_activity_target])
            
            

    prediction_button.click(
        fn=predict_inverse,
        inputs=[antimicrobial_activity_target],
        outputs=[optimal_conditions],
        show_progress=True,
    )
    clear_button.click(
        lambda x: [gr.update(value=None)] * 2,
        [],
        [
            antimicrobial_activity_target,
            optimal_conditions,
        ],
    )


if __name__ == "__main__":
    demo.queue(concurrency_count=2)
    demo.launch()