snajmark commited on
Commit
2b54252
·
1 Parent(s): c9e11c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -144,6 +144,8 @@ def fit_outputs_constraints(x, hardness_target, ys_target):
144
 
145
  def predict_inverse(hardness_target, ys_target, request: gr.Request):
146
 
 
 
147
  continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
148
  'PROPERTY: Calculated Young modulus (GPa)']
149
  categorical_variables = list(one_hot.columns)
@@ -151,7 +153,7 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
151
  categorical_variables.remove(c)
152
 
153
  domain = []
154
- for c in one_hot.columns:
155
  if c in continuous_variables:
156
  if c == continuous_variables[0]:
157
  domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.528, 0.528)})#(0.,1.)})
@@ -162,7 +164,7 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
162
 
163
  constraints = []
164
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
165
- one_hot_colums = utils.return_feature_names()
166
  for constraint in constrained_columns:
167
  sum_string = ''
168
  for i in range (len(one_hot_columns)):
@@ -173,7 +175,7 @@ def predict_inverse(hardness_target, ys_target, request: gr.Request):
173
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
174
 
175
  def fit_outputs(x):
176
- return fit_outputs_constraints(x, harndess_target, ys_target)
177
 
178
  opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
179
  domain = domain, # box-constraints of the problem
 
144
 
145
  def predict_inverse(hardness_target, ys_target, request: gr.Request):
146
 
147
+ one_hot_colums = utils.return_feature_names()
148
+
149
  continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
150
  'PROPERTY: Calculated Young modulus (GPa)']
151
  categorical_variables = list(one_hot.columns)
 
153
  categorical_variables.remove(c)
154
 
155
  domain = []
156
+ for c in one_hot_columns:
157
  if c in continuous_variables:
158
  if c == continuous_variables[0]:
159
  domain.append({'name': str(c), 'type': 'continuous', 'domain': (0.528, 0.528)})#(0.,1.)})
 
164
 
165
  constraints = []
166
  constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
167
+
168
  for constraint in constrained_columns:
169
  sum_string = ''
170
  for i in range (len(one_hot_columns)):
 
175
  constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
176
 
177
  def fit_outputs(x):
178
+ return fit_outputs_constraints(x, hardness_target, ys_target)
179
 
180
  opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
181
  domain = domain, # box-constraints of the problem