bndl's picture
Upload 115 files
4f5540c
import os
import os.path as osp
import warnings
from math import pi as PI
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Embedding, Linear, ModuleList, Sequential
from torch_scatter import scatter
from torch_geometric.data import Dataset, download_url, extract_zip
from torch_geometric.data.makedirs import makedirs
from torch_geometric.nn import MessagePassing, radius_graph
qm9_target_dict = {
0: 'dipole_moment',
1: 'isotropic_polarizability',
2: 'homo',
3: 'lumo',
4: 'gap',
5: 'electronic_spatial_extent',
6: 'zpve',
7: 'energy_U0',
8: 'energy_U',
9: 'enthalpy_H',
10: 'free_energy',
11: 'heat_capacity',
}
class SchNet(torch.nn.Module):
r"""The continuous-filter convolutional neural network SchNet from the
`"SchNet: A Continuous-filter Convolutional Neural Network for Modeling
Quantum Interactions" <https://arxiv.org/abs/1706.08566>`_ paper that uses
the interactions blocks of the form
.. math::
\mathbf{x}^{\prime}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \odot
h_{\mathbf{\Theta}} ( \exp(-\gamma(\mathbf{e}_{j,i} - \mathbf{\mu}))),
here :math:`h_{\mathbf{\Theta}}` denotes an MLP and
:math:`\mathbf{e}_{j,i}` denotes the interatomic distances between atoms.
.. note::
For an example of using a pretrained SchNet variant, see
`examples/qm9_pretrained_schnet.py
<https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
qm9_pretrained_schnet.py>`_.
Args:
hidden_channels (int, optional): Hidden embedding size.
(default: :obj:`128`)
num_filters (int, optional): The number of filters to use.
(default: :obj:`128`)
num_interactions (int, optional): The number of interaction blocks.
(default: :obj:`6`)
num_gaussians (int, optional): The number of gaussians :math:`\mu`.
(default: :obj:`50`)
cutoff (float, optional): Cutoff distance for interatomic interactions.
(default: :obj:`10.0`)
max_num_neighbors (int, optional): The maximum number of neighbors to
collect for each node within the :attr:`cutoff` distance.
(default: :obj:`32`)
readout (string, optional): Whether to apply :obj:`"add"` or
:obj:`"mean"` global aggregation. (default: :obj:`"add"`)
dipole (bool, optional): If set to :obj:`True`, will use the magnitude
of the dipole moment to make the final prediction, *e.g.*, for
target 0 of :class:`torch_geometric.datasets.QM9`.
(default: :obj:`False`)
mean (float, optional): The mean of the property to predict.
(default: :obj:`None`)
std (float, optional): The standard deviation of the property to
predict. (default: :obj:`None`)
atomref (torch.Tensor, optional): The reference of single-atom
properties.
Expects a vector of shape :obj:`(max_atomic_number, )`.
get_embedding (bool, optional): If true, forward outputs an embedding
rather than singular value
"""
url = 'http://www.quantum-machine.org/datasets/trained_schnet_models.zip'
def __init__(self, hidden_channels: int = 128, num_filters: int = 128,
num_interactions: int = 6, num_gaussians: int = 50,
cutoff: float = 10.0, max_num_neighbors: int = 32,
readout: str = 'add', dipole: bool = False,
mean: Optional[float] = None, std: Optional[float] = None,
atomref: Optional[torch.Tensor] = None, get_embedding = False):
super().__init__()
import ase
self.hidden_channels = hidden_channels
self.num_filters = num_filters
self.num_interactions = num_interactions
self.num_gaussians = num_gaussians
self.cutoff = cutoff
self.max_num_neighbors = max_num_neighbors
self.readout = readout
self.dipole = dipole
self.readout = 'add' if self.dipole else self.readout
self.mean = mean
self.std = std
self.scale = None
self.get_embedding = get_embedding
atomic_mass = torch.from_numpy(ase.data.atomic_masses)
self.register_buffer('atomic_mass', atomic_mass)
self.embedding = Embedding(100, hidden_channels)
self.distance_expansion = GaussianSmearing(0.0, cutoff, num_gaussians)
self.interactions = ModuleList()
for _ in range(num_interactions):
block = InteractionBlock(hidden_channels, num_gaussians,
num_filters, cutoff)
self.interactions.append(block)
self.lin1 = Linear(hidden_channels, hidden_channels // 2)
self.act = ShiftedSoftplus()
self.lin2 = Linear(hidden_channels // 2, 1)
self.register_buffer('initial_atomref', atomref)
self.atomref = None
if atomref is not None:
self.atomref = Embedding(100, 1)
self.atomref.weight.data.copy_(atomref)
self.reset_parameters()
def reset_parameters(self):
self.embedding.reset_parameters()
for interaction in self.interactions:
interaction.reset_parameters()
torch.nn.init.xavier_uniform_(self.lin1.weight)
self.lin1.bias.data.fill_(0)
torch.nn.init.xavier_uniform_(self.lin2.weight)
self.lin2.bias.data.fill_(0)
if self.atomref is not None:
self.atomref.weight.data.copy_(self.initial_atomref)
@staticmethod
def from_qm9_pretrained(root: str, dataset: Dataset, target: int):
import ase
import schnetpack as spk # noqa
assert target >= 0 and target <= 12
units = [1] * 12
units[0] = ase.units.Debye
units[1] = ase.units.Bohr**3
units[5] = ase.units.Bohr**2
root = osp.expanduser(osp.normpath(root))
makedirs(root)
folder = 'trained_schnet_models'
if not osp.exists(osp.join(root, folder)):
path = download_url(SchNet.url, root)
extract_zip(path, root)
os.unlink(path)
name = f'qm9_{qm9_target_dict[target]}'
path = osp.join(root, 'trained_schnet_models', name, 'split.npz')
split = np.load(path)
train_idx = split['train_idx']
val_idx = split['val_idx']
test_idx = split['test_idx']
# Filter the splits to only contain characterized molecules.
idx = dataset.data.idx
assoc = idx.new_empty(idx.max().item() + 1)
assoc[idx] = torch.arange(idx.size(0))
train_idx = assoc[train_idx[np.isin(train_idx, idx)]]
val_idx = assoc[val_idx[np.isin(val_idx, idx)]]
test_idx = assoc[test_idx[np.isin(test_idx, idx)]]
path = osp.join(root, 'trained_schnet_models', name, 'best_model')
with warnings.catch_warnings():
warnings.simplefilter('ignore')
state = torch.load(path, map_location='cpu')
net = SchNet(hidden_channels=128, num_filters=128, num_interactions=6,
num_gaussians=50, cutoff=10.0,
atomref=dataset.atomref(target))
net.embedding.weight = state.representation.embedding.weight
for int1, int2 in zip(state.representation.interactions,
net.interactions):
int2.mlp[0].weight = int1.filter_network[0].weight
int2.mlp[0].bias = int1.filter_network[0].bias
int2.mlp[2].weight = int1.filter_network[1].weight
int2.mlp[2].bias = int1.filter_network[1].bias
int2.lin.weight = int1.dense.weight
int2.lin.bias = int1.dense.bias
int2.conv.lin1.weight = int1.cfconv.in2f.weight
int2.conv.lin2.weight = int1.cfconv.f2out.weight
int2.conv.lin2.bias = int1.cfconv.f2out.bias
net.lin1.weight = state.output_modules[0].out_net[1].out_net[0].weight
net.lin1.bias = state.output_modules[0].out_net[1].out_net[0].bias
net.lin2.weight = state.output_modules[0].out_net[1].out_net[1].weight
net.lin2.bias = state.output_modules[0].out_net[1].out_net[1].bias
mean = state.output_modules[0].atom_pool.average
net.readout = 'mean' if mean is True else 'add'
dipole = state.output_modules[0].__class__.__name__ == 'DipoleMoment'
net.dipole = dipole
net.mean = state.output_modules[0].standardize.mean.item()
net.std = state.output_modules[0].standardize.stddev.item()
if state.output_modules[0].atomref is not None:
net.atomref.weight = state.output_modules[0].atomref.weight
else:
net.atomref = None
net.scale = 1. / units[target]
return net, (dataset[train_idx], dataset[val_idx], dataset[test_idx])
def forward(self, z, pos, batch=None):
""""""
assert z.dim() == 1 and z.dtype == torch.long
batch = torch.zeros_like(z) if batch is None else batch
#print('batch', batch)
h = self.embedding(z)
edge_index = radius_graph(pos, r=self.cutoff, batch=batch,
max_num_neighbors=self.max_num_neighbors)
row, col = edge_index
edge_weight = (pos[row] - pos[col]).norm(dim=-1)
edge_attr = self.distance_expansion(edge_weight)
for interaction in self.interactions:
h = h + interaction(h, edge_index, edge_weight, edge_attr)
h = self.lin1(h)
h = self.act(h)
if self.get_embedding:
return h
# h is vector after activation
h = self.lin2(h)
if self.dipole:
# Get center of mass.
mass = self.atomic_mass[z].view(-1, 1)
c = scatter(mass * pos, batch, dim=0) / scatter(mass, batch, dim=0)
h = h * (pos - c.index_select(0, batch))
if not self.dipole and self.mean is not None and self.std is not None:
h = h * self.std + self.mean
if not self.dipole and self.atomref is not None:
h = h + self.atomref(z)
out = scatter(h, batch, dim=0, reduce=self.readout)
if self.dipole:
out = torch.norm(out, dim=-1, keepdim=True)
if self.scale is not None:
out = self.scale * out
return out
def __repr__(self):
return (f'{self.__class__.__name__}('
f'hidden_channels={self.hidden_channels}, '
f'num_filters={self.num_filters}, '
f'num_interactions={self.num_interactions}, '
f'num_gaussians={self.num_gaussians}, '
f'cutoff={self.cutoff})')
class InteractionBlock(torch.nn.Module):
def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff):
super().__init__()
self.mlp = Sequential(
Linear(num_gaussians, num_filters),
ShiftedSoftplus(),
Linear(num_filters, num_filters),
)
self.conv = CFConv(hidden_channels, hidden_channels, num_filters,
self.mlp, cutoff)
self.act = ShiftedSoftplus()
self.lin = Linear(hidden_channels, hidden_channels)
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.mlp[0].weight)
self.mlp[0].bias.data.fill_(0)
torch.nn.init.xavier_uniform_(self.mlp[2].weight)
self.mlp[2].bias.data.fill_(0)
self.conv.reset_parameters()
torch.nn.init.xavier_uniform_(self.lin.weight)
self.lin.bias.data.fill_(0)
def forward(self, x, edge_index, edge_weight, edge_attr):
x = self.conv(x, edge_index, edge_weight, edge_attr)
x = self.act(x)
x = self.lin(x)
return x
class CFConv(MessagePassing):
def __init__(self, in_channels, out_channels, num_filters, nn, cutoff):
super().__init__(aggr='add')
self.lin1 = Linear(in_channels, num_filters, bias=False)
self.lin2 = Linear(num_filters, out_channels)
self.nn = nn
self.cutoff = cutoff
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.lin1.weight)
torch.nn.init.xavier_uniform_(self.lin2.weight)
self.lin2.bias.data.fill_(0)
def forward(self, x, edge_index, edge_weight, edge_attr):
C = 0.5 * (torch.cos(edge_weight * PI / self.cutoff) + 1.0)
W = self.nn(edge_attr) * C.view(-1, 1)
x = self.lin1(x)
x = self.propagate(edge_index, x=x, W=W)
x = self.lin2(x)
return x
def message(self, x_j, W):
return x_j * W
class GaussianSmearing(torch.nn.Module):
def __init__(self, start=0.0, stop=5.0, num_gaussians=50):
super().__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item()**2
self.register_buffer('offset', offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
class ShiftedSoftplus(torch.nn.Module):
def __init__(self):
super().__init__()
self.shift = torch.log(torch.tensor(2.0)).item()
def forward(self, x):
return F.softplus(x) - self.shift