saritha's picture
Update app.py
88f41cb verified
raw
history blame
3.63 kB
import os
from langchain_core.prompts import PromptTemplate
from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
from langchain_community.document_loaders import PyPDFLoader
import google.generativeai as genai
import gradio as gr
# Function for initialization
def initialize(pdf_file, question):
try:
# Access the uploaded file information from Gradio
file_info = pdf_file
# Check if a file was uploaded
if file_info is not None:
# Construct potential file path based on temporary directory and filename
file_path = os.path.join("/tmp", file_info.name) # Adjust temporary directory if needed
if os.path.exists(file_path):
# Process the PDF
pdf_loader = PyPDFLoader(file_path)
pages = pdf_loader.load_and_split()
processed_context = "\n".join(str(page.page_content) for page in pages[:30]) # Limit to first 30 pages
# Configure Google Generative AI (replace with your API key)
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Prompt template for formatting context and question
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context"
Context:
{context}
Question:
{question}
Answer:
"""
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
# Load the GeminiPro model
model = genai.GenerativeModel('gemini-pro')
# Option 1: Using GeminiPro's Text Generation (if applicable)
# Check if the model has a 'generate' method (or similar) - adjust based on actual method
if hasattr(model, 'generate'):
# Process context and question (already done)
# Generate answer using GeminiPro's generate method
generated_answer = model.generate(prompt=prompt) # Replace with the appropriate method
# Extract the answer (parse the output from 'generate')
# ... (implementation depends on the model's output format)
return generated_answer
# Option 2: Alternative LLM Integration (if GeminiPro methods not suitable)
# Replace this section with code using an alternative library/framework
# for question answering (e.g., transformers, haystack)
# Ensure the code integrates with your chosen LLM and handles context processing,
# question answering, and answer extraction.
# Example placeholder (replace with your actual implementation):
# return "Alternative LLM integration not yet implemented."
else:
return "Error: The uploaded file could not be found."
else:
return "Error: No PDF file was uploaded."
except Exception as e:
return f"An error occurred: {e}" # Generic error handling
# Create a Gradio interface
interface = gr.Interface(
fn=initialize,
inputs=[
gr.File(label="Upload PDF"), # No need for 'type' argument
gr.Textbox(label="Question")
],
outputs="text",
title="GeminiPro Q&A Bot",
description="Ask questions about the uploaded PDF document.",
)
# Launch the interface
interface.launch()