Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
|
7 |
# ------------------------------
|
8 |
# Load Models
|
9 |
# ------------------------------
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
quiz_model = AutoModelForSeq2SeqLM.from_pretrained(quiz_model_name)
|
14 |
-
|
15 |
-
# For summarizer and fallback tasks
|
16 |
-
default_model_name = "t5-base"
|
17 |
-
tokenizer_qg = T5Tokenizer.from_pretrained(default_model_name)
|
18 |
-
model_qg = T5ForConditionalGeneration.from_pretrained(default_model_name)
|
19 |
-
|
20 |
-
# For plagiarism detection
|
21 |
model_plag = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
22 |
|
23 |
# ------------------------------
|
24 |
-
# Quiz Generator
|
25 |
# ------------------------------
|
26 |
def generate_mcqs(text, num_questions=3):
|
27 |
input_text = f"generate questions: {text.strip()}"
|
28 |
-
input_ids =
|
29 |
|
30 |
-
outputs =
|
31 |
input_ids=input_ids,
|
32 |
max_length=256,
|
33 |
num_return_sequences=num_questions,
|
@@ -36,7 +29,7 @@ def generate_mcqs(text, num_questions=3):
|
|
36 |
top_p=0.95
|
37 |
)
|
38 |
|
39 |
-
questions = [
|
40 |
return "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
|
41 |
|
42 |
# ------------------------------
|
@@ -54,10 +47,15 @@ def chatbot_response(message, history):
|
|
54 |
return "This is a placeholder response for now. (LLM not integrated)"
|
55 |
|
56 |
# ------------------------------
|
57 |
-
# Speech Question Solver (
|
58 |
# ------------------------------
|
59 |
-
def speech_answer(
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# ------------------------------
|
63 |
# Summarizer
|
@@ -108,7 +106,7 @@ def check_plagiarism(text1, text2):
|
|
108 |
# Gradio Interface
|
109 |
# ------------------------------
|
110 |
with gr.Blocks() as demo:
|
111 |
-
gr.Markdown("# π Smart LMS Suite (
|
112 |
|
113 |
with gr.Tab("π§ Quiz Generator"):
|
114 |
quiz_text = gr.Textbox(label="π Input Content", lines=6, placeholder="Paste a paragraph here...")
|
@@ -128,7 +126,7 @@ with gr.Blocks() as demo:
|
|
128 |
|
129 |
with gr.Tab("π€ Speech Q Solver"):
|
130 |
audio_in = gr.Audio(label="Upload Audio", type="filepath")
|
131 |
-
audio_btn = gr.Button("
|
132 |
audio_out = gr.Textbox(label="Answer")
|
133 |
audio_btn.click(fn=speech_answer, inputs=audio_in, outputs=audio_out)
|
134 |
|
@@ -165,6 +163,6 @@ with gr.Blocks() as demo:
|
|
165 |
plag_btn.click(fn=check_plagiarism, inputs=[text1, text2], outputs=plag_out)
|
166 |
|
167 |
# ------------------------------
|
168 |
-
# Launch
|
169 |
# ------------------------------
|
170 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
|
7 |
# ------------------------------
|
8 |
# Load Models
|
9 |
# ------------------------------
|
10 |
+
qg_model_name = "iarfmoose/t5-base-question-generator"
|
11 |
+
tokenizer_qg = AutoTokenizer.from_pretrained(qg_model_name)
|
12 |
+
model_qg = AutoModelForSeq2SeqLM.from_pretrained(qg_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model_plag = SentenceTransformer('all-MiniLM-L6-v2')
|
14 |
+
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
15 |
|
16 |
# ------------------------------
|
17 |
+
# Quiz Generator
|
18 |
# ------------------------------
|
19 |
def generate_mcqs(text, num_questions=3):
|
20 |
input_text = f"generate questions: {text.strip()}"
|
21 |
+
input_ids = tokenizer_qg.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
22 |
|
23 |
+
outputs = model_qg.generate(
|
24 |
input_ids=input_ids,
|
25 |
max_length=256,
|
26 |
num_return_sequences=num_questions,
|
|
|
29 |
top_p=0.95
|
30 |
)
|
31 |
|
32 |
+
questions = [tokenizer_qg.decode(out, skip_special_tokens=True).strip() for out in outputs]
|
33 |
return "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
|
34 |
|
35 |
# ------------------------------
|
|
|
47 |
return "This is a placeholder response for now. (LLM not integrated)"
|
48 |
|
49 |
# ------------------------------
|
50 |
+
# Speech Question Solver (NEW)
|
51 |
# ------------------------------
|
52 |
+
def speech_answer(audio_file_path):
|
53 |
+
transcription = asr(audio_file_path)["text"]
|
54 |
+
input_text = f"generate questions: {transcription.strip()}"
|
55 |
+
input_ids = tokenizer_qg.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
56 |
+
outputs = model_qg.generate(input_ids, max_length=256, num_return_sequences=1)
|
57 |
+
response = tokenizer_qg.decode(outputs[0], skip_special_tokens=True)
|
58 |
+
return f"π£οΈ Transcript: {transcription.strip()}\n\nπ‘ Answer: {response.strip()}"
|
59 |
|
60 |
# ------------------------------
|
61 |
# Summarizer
|
|
|
106 |
# Gradio Interface
|
107 |
# ------------------------------
|
108 |
with gr.Blocks() as demo:
|
109 |
+
gr.Markdown("# π Smart LMS Suite (Offline)")
|
110 |
|
111 |
with gr.Tab("π§ Quiz Generator"):
|
112 |
quiz_text = gr.Textbox(label="π Input Content", lines=6, placeholder="Paste a paragraph here...")
|
|
|
126 |
|
127 |
with gr.Tab("π€ Speech Q Solver"):
|
128 |
audio_in = gr.Audio(label="Upload Audio", type="filepath")
|
129 |
+
audio_btn = gr.Button("Transcribe + Generate Answer")
|
130 |
audio_out = gr.Textbox(label="Answer")
|
131 |
audio_btn.click(fn=speech_answer, inputs=audio_in, outputs=audio_out)
|
132 |
|
|
|
163 |
plag_btn.click(fn=check_plagiarism, inputs=[text1, text2], outputs=plag_out)
|
164 |
|
165 |
# ------------------------------
|
166 |
+
# Launch
|
167 |
# ------------------------------
|
168 |
demo.launch()
|