payman / src /ingestion /document_processor.py
satyamdev404's picture
Upload 31 files
e0aa230 verified
"""
Document Processor Module
This module is responsible for processing various document formats including
PDF, DOCX, CSV, PPTX, and Excel files with complete functionality.
Technologies: PyMuPDF, python-docx, pandas, python-pptx, pdfplumber
"""
import os
import time
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional, Union
import logging
# Import document processing libraries
try:
import fitz # PyMuPDF
import docx
import pandas as pd
import pptx
import pdfplumber
from openpyxl import load_workbook
except ImportError as e:
logging.warning(f"Some document processing libraries are not installed: {e}")
from utils.error_handler import DocumentProcessingError, error_handler, ErrorType
class DocumentProcessor:
"""
Processes various document formats and extracts text content with full functionality.
Supported formats:
- PDF (using PyMuPDF and pdfplumber)
- DOCX (using python-docx)
- CSV/Excel (using pandas)
- PPTX (using python-pptx)
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the DocumentProcessor with configuration.
Args:
config: Configuration dictionary with processing parameters
"""
self.config = config or {}
self.logger = logging.getLogger(__name__)
# Configuration settings
self.max_file_size_mb = self.config.get("max_file_size_mb", 50)
self.supported_formats = self.config.get(
"supported_formats",
[".pdf", ".docx", ".csv", ".xlsx", ".xls", ".pptx", ".txt", ".md"],
)
@error_handler(ErrorType.DOCUMENT_PROCESSING)
def process_document(self, file_path: str) -> Dict[str, Any]:
"""
Process a document and extract its text content with metadata.
Args:
file_path: Path to the document file
Returns:
Dictionary containing extracted text and metadata
"""
if not os.path.exists(file_path):
raise DocumentProcessingError(f"Document not found: {file_path}", file_path)
# Validate file size
file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
if file_size_mb > self.max_file_size_mb:
raise DocumentProcessingError(
f"File too large: {file_size_mb:.1f}MB (max: {self.max_file_size_mb}MB)",
file_path,
)
file_extension = os.path.splitext(file_path)[1].lower()
# Validate file format
if file_extension not in self.supported_formats:
raise DocumentProcessingError(
f"Unsupported file format: {file_extension}", file_path
)
self.logger.info(f"Processing document: {file_path} ({file_size_mb:.1f}MB)")
try:
if file_extension == ".pdf":
return self._process_pdf(file_path)
elif file_extension == ".docx":
return self._process_docx(file_path)
elif file_extension in [".csv", ".xlsx", ".xls"]:
return self._process_spreadsheet(file_path)
elif file_extension == ".pptx":
return self._process_pptx(file_path)
elif file_extension in [".txt", ".md"]:
return self._process_text_file(file_path)
except Exception as e:
raise DocumentProcessingError(
f"Error processing document: {str(e)}", file_path
)
def process_batch(self, file_paths: List[str]) -> List[Dict[str, Any]]:
"""
Process multiple documents in batch.
Args:
file_paths: List of file paths to process
Returns:
List of processed document results
"""
results = []
self.logger.info(f"Processing batch of {len(file_paths)} documents")
for i, file_path in enumerate(file_paths):
try:
result = self.process_document(file_path)
results.append(result)
self.logger.info(f"Processed {i+1}/{len(file_paths)}: {file_path}")
except Exception as e:
self.logger.error(f"❌ Failed to process {file_path}: {str(e)}")
# Continue with other files
continue
return results
def _extract_metadata(self, file_path: str) -> Dict[str, Any]:
"""
Extract common metadata from file.
Args:
file_path: Path to the file
Returns:
Dictionary containing file metadata
"""
file_stat = os.stat(file_path)
file_path_obj = Path(file_path)
return {
"filename": file_path_obj.name,
"file_extension": file_path_obj.suffix.lower(),
"file_size_bytes": file_stat.st_size,
"file_size_mb": round(file_stat.st_size / (1024 * 1024), 2),
"created_time": datetime.fromtimestamp(file_stat.st_ctime).isoformat(),
"modified_time": datetime.fromtimestamp(file_stat.st_mtime).isoformat(),
"processed_time": datetime.now().isoformat(),
}
def _process_pdf(self, file_path: str) -> Dict[str, Any]:
"""
📄 Extract text from a PDF document using PyMuPDF with fallback to pdfplumber.
Args:
file_path: Path to the PDF file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f"Processing PDF: {file_path}")
text_content = []
metadata = self._extract_metadata(file_path)
try:
# Primary method: PyMuPDF (faster)
doc = fitz.open(file_path)
metadata.update(
{
"page_count": doc.page_count,
"title": doc.metadata.get("title", ""),
"author": doc.metadata.get("author", ""),
"subject": doc.metadata.get("subject", ""),
"creator": doc.metadata.get("creator", ""),
}
)
for page_num in range(doc.page_count):
page = doc[page_num]
text = page.get_text()
if text.strip(): # Only add non-empty pages
text_content.append({"page": page_num + 1, "content": text.strip()})
doc.close()
except Exception as e:
self.logger.warning(f"PyMuPDF failed, trying pdfplumber: {str(e)}")
# Fallback method: pdfplumber (more robust for complex PDFs)
try:
with pdfplumber.open(file_path) as pdf:
metadata["page_count"] = len(pdf.pages)
for page_num, page in enumerate(pdf.pages):
text = page.extract_text()
if text and text.strip():
text_content.append(
{"page": page_num + 1, "content": text.strip()}
)
except Exception as fallback_error:
raise DocumentProcessingError(
f"Both PDF extraction methods failed: {str(fallback_error)}",
file_path,
)
# Final content processing
full_text = "\n\n".join([item["content"] for item in text_content])
metadata["total_characters"] = len(full_text)
metadata["total_words"] = len(full_text.split())
return {
"content": full_text,
"pages": text_content,
"metadata": metadata,
"source": file_path,
"document_type": "pdf",
}
def _process_docx(self, file_path: str) -> Dict[str, Any]:
"""
Extract text from a DOCX document using python-docx.
Args:
file_path: Path to the DOCX file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f"Processing DOCX: {file_path}")
try:
doc = docx.Document(file_path)
metadata = self._extract_metadata(file_path)
# Extract document properties
core_props = doc.core_properties
metadata.update(
{
"title": core_props.title or "",
"author": core_props.author or "",
"subject": core_props.subject or "",
"created": (
core_props.created.isoformat() if core_props.created else ""
),
"modified": (
core_props.modified.isoformat() if core_props.modified else ""
),
"paragraph_count": len(doc.paragraphs),
}
)
# Extract text content
paragraphs = []
full_text_parts = []
for i, paragraph in enumerate(doc.paragraphs):
text = paragraph.text.strip()
if text: # Only include non-empty paragraphs
paragraphs.append({"paragraph": i + 1, "content": text})
full_text_parts.append(text)
# Extract tables if present
tables_content = []
for table_idx, table in enumerate(doc.tables):
table_data = []
for row in table.rows:
row_data = [cell.text.strip() for cell in row.cells]
if any(row_data): # Only include non-empty rows
table_data.append(row_data)
if table_data:
tables_content.append({"table": table_idx + 1, "data": table_data})
# Add table content to full text
table_text = "\n".join([" | ".join(row) for row in table_data])
full_text_parts.append(f"\n[Table {table_idx + 1}]\n{table_text}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"table_count": len(tables_content),
}
)
return {
"content": full_text,
"paragraphs": paragraphs,
"tables": tables_content,
"metadata": metadata,
"source": file_path,
"document_type": "docx",
}
except Exception as e:
raise DocumentProcessingError(f"Error processing DOCX: {str(e)}", file_path)
def _process_spreadsheet(self, file_path: str) -> Dict[str, Any]:
"""
Extract text from a CSV or Excel file using pandas.
Args:
file_path: Path to the spreadsheet file
Returns:
Dictionary with extracted text and metadata
"""
file_extension = os.path.splitext(file_path)[1].lower()
self.logger.info(f"Processing spreadsheet: {file_path}")
try:
metadata = self._extract_metadata(file_path)
sheets_data = []
if file_extension == ".csv":
# 📄 Process CSV file
df = pd.read_csv(file_path, encoding="utf-8")
sheet_content = self._process_dataframe(df, "Sheet1")
sheets_data.append(sheet_content)
metadata["sheet_count"] = 1
else:
# Process Excel file
excel_file = pd.ExcelFile(file_path)
metadata["sheet_count"] = len(excel_file.sheet_names)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
sheet_content = self._process_dataframe(df, sheet_name)
sheets_data.append(sheet_content)
# 🔗 Combine all sheets content
full_text_parts = []
for sheet in sheets_data:
full_text_parts.append(f"[{sheet['sheet_name']}]\n{sheet['content']}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"total_rows": sum(sheet["row_count"] for sheet in sheets_data),
"total_columns": (
max(sheet["column_count"] for sheet in sheets_data)
if sheets_data
else 0
),
}
)
return {
"content": full_text,
"sheets": sheets_data,
"metadata": metadata,
"source": file_path,
"document_type": "spreadsheet",
}
except Exception as e:
raise DocumentProcessingError(
f"Error processing spreadsheet: {str(e)}", file_path
)
def _process_dataframe(self, df: pd.DataFrame, sheet_name: str) -> Dict[str, Any]:
"""
Process a pandas DataFrame into text content.
Args:
df: Pandas DataFrame
sheet_name: Name of the sheet
Returns:
Dictionary with processed sheet data
"""
# Clean the dataframe
df = df.dropna(how="all") # Remove completely empty rows
df = df.fillna("") # Fill NaN with empty strings
# Create text representation
content_parts = []
# Add headers
headers = df.columns.tolist()
content_parts.append(" | ".join(str(h) for h in headers))
content_parts.append("-" * 50) # Separator
# Add data rows
for _, row in df.iterrows():
row_text = " | ".join(str(cell) for cell in row.values)
content_parts.append(row_text)
content = "\n".join(content_parts)
return {
"sheet_name": sheet_name,
"content": content,
"headers": headers,
"row_count": len(df),
"column_count": len(df.columns),
"data": df.to_dict("records"), # For structured access
}
def _process_pptx(self, file_path: str) -> Dict[str, Any]:
"""
🎯 Extract text from a PowerPoint presentation using python-pptx.
Args:
file_path: Path to the PPTX file
Returns:
Dictionary with extracted text and metadata
"""
self.logger.info(f" Processing PPTX: {file_path}")
try:
presentation = pptx.Presentation(file_path)
metadata = self._extract_metadata(file_path)
# Extract presentation metadata
core_props = presentation.core_properties
metadata.update(
{
"title": core_props.title or "",
"author": core_props.author or "",
"subject": core_props.subject or "",
"created": (
core_props.created.isoformat() if core_props.created else ""
),
"modified": (
core_props.modified.isoformat() if core_props.modified else ""
),
"slide_count": len(presentation.slides),
}
)
# 🎯 Extract content from slides
slides_content = []
full_text_parts = []
for slide_idx, slide in enumerate(presentation.slides):
slide_text_parts = []
# Extract text from all shapes in the slide
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text.strip():
slide_text_parts.append(shape.text.strip())
if slide_text_parts:
slide_content = "\n".join(slide_text_parts)
slides_content.append(
{"slide": slide_idx + 1, "content": slide_content}
)
full_text_parts.append(f"[Slide {slide_idx + 1}]\n{slide_content}")
full_text = "\n\n".join(full_text_parts)
metadata.update(
{
"total_characters": len(full_text),
"total_words": len(full_text.split()),
"slides_with_content": len(slides_content),
}
)
return {
"content": full_text,
"slides": slides_content,
"metadata": metadata,
"source": file_path,
"document_type": "pptx",
}
except Exception as e:
raise DocumentProcessingError(f"Error processing PPTX: {str(e)}", file_path)
def _process_text_file(self, file_path: str) -> Dict[str, Any]:
"""
📝 Extract text from plain text files (.txt, .md).
Args:
file_path: Path to the text file
Returns:
Dictionary with extracted text and metadata
"""
file_extension = os.path.splitext(file_path)[1].lower()
self.logger.info(f" Processing text file: {file_path}")
try:
metadata = self._extract_metadata(file_path)
# Try different encodings for robust text reading
encodings = ["utf-8", "utf-8-sig", "latin-1", "cp1252"]
content = None
for encoding in encodings:
try:
with open(file_path, "r", encoding=encoding) as file:
content = file.read()
self.logger.info(
f" Successfully read file with {encoding} encoding"
)
break
except UnicodeDecodeError:
continue
except Exception as e:
self.logger.warning(f"Failed to read with {encoding}: {str(e)}")
continue
if content is None:
raise DocumentProcessingError(
f"Could not read file with any supported encoding", file_path
)
# Clean and process content
content = content.strip()
if not content:
raise DocumentProcessingError(
f"File is empty or contains no readable text", file_path
)
# Split content into logical sections for better processing
sections = []
if file_extension == ".md":
# 📋 For Markdown files, split by headers
sections = self._split_markdown_content(content)
else:
# 📄 For plain text, split by paragraphs
sections = self._split_text_content(content)
# Update metadata with text-specific information
lines = content.split("\n")
metadata.update(
{
"file_type": (
"markdown" if file_extension == ".md" else "plain_text"
),
"line_count": len(lines),
"paragraph_count": len(
[p for p in content.split("\n\n") if p.strip()]
),
"total_characters": len(content),
"total_words": len(content.split()),
"encoding_used": encoding if "encoding" in locals() else "utf-8",
"sections_count": len(sections),
}
)
return {
"content": content,
"sections": sections,
"metadata": metadata,
"source": file_path,
"document_type": "markdown" if file_extension == ".md" else "text",
}
except Exception as e:
raise DocumentProcessingError(
f"Error processing text file: {str(e)}", file_path
)
def _split_markdown_content(self, content: str) -> List[Dict[str, Any]]:
"""
Split Markdown content by headers for better organization.
Args:
content: Markdown content
Returns:
List of sections with headers and content
"""
sections = []
lines = content.split("\n")
current_section = {"header": "", "content": [], "level": 0}
for line in lines:
# Check for markdown headers
if line.strip().startswith("#"):
# Save previous section if it has content
if current_section["content"] or current_section["header"]:
section_content = "\n".join(current_section["content"]).strip()
if section_content or current_section["header"]:
sections.append(
{
"header": current_section["header"],
"content": section_content,
"level": current_section["level"],
"section_index": len(sections),
}
)
# Start new section
header_level = len(line) - len(line.lstrip("#"))
header_text = line.lstrip("#").strip()
current_section = {
"header": header_text,
"content": [],
"level": header_level,
}
else:
current_section["content"].append(line)
# Add the last section
if current_section["content"] or current_section["header"]:
section_content = "\n".join(current_section["content"]).strip()
if section_content or current_section["header"]:
sections.append(
{
"header": current_section["header"],
"content": section_content,
"level": current_section["level"],
"section_index": len(sections),
}
)
# If no headers found, treat entire content as one section
if not sections:
sections.append(
{
"header": "Document Content",
"content": content.strip(),
"level": 1,
"section_index": 0,
}
)
return sections
def _split_text_content(self, content: str) -> List[Dict[str, Any]]:
"""
Split plain text content by paragraphs.
Args:
content: Plain text content
Returns:
List of paragraph sections
"""
sections = []
paragraphs = [p.strip() for p in content.split("\n\n") if p.strip()]
for i, paragraph in enumerate(paragraphs):
sections.append(
{
"header": f"Paragraph {i + 1}",
"content": paragraph,
"level": 1,
"section_index": i,
}
)
# If no clear paragraphs, treat as single section
if not sections:
sections.append(
{
"header": "Document Content",
"content": content.strip(),
"level": 1,
"section_index": 0,
}
)
return sections