payman / src /rag /query_router.py
satyamdev404's picture
Upload 31 files
e0aa230 verified
"""
Query Router Module
This module intelligently routes queries between local document search
and live web search based on query analysis and user preferences.
Technology: Custom routing logic with RAG + Live Search integration
"""
import logging
import time
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime
from enum import Enum
class QueryType(Enum):
"""Enumeration of different query types for routing decisions."""
FACTUAL = "factual" # πŸ“Š Current facts, news, data
CONCEPTUAL = "conceptual" # πŸ’‘ Definitions, explanations
PROCEDURAL = "procedural" # πŸ”§ How-to, instructions
ANALYTICAL = "analytical" # πŸ“ˆ Analysis, comparisons
TEMPORAL = "temporal" # ⏰ Time-sensitive information
HYBRID = "hybrid" # πŸ”„ Requires both sources
class QueryRouter:
"""
Intelligent query router that decides between local docs and live search.
Features:
- Query type classification
- Intelligent routing decisions
- Hybrid search coordination
- Result fusion and ranking
- Performance optimization
"""
def __init__(
self,
local_query_processor,
live_search_processor,
config: Optional[Dict[str, Any]] = None,
):
"""
Initialize the QueryRouter.
Args:
local_query_processor: Local document query processor
live_search_processor: Live web search processor
config: Configuration dictionary
"""
self.local_processor = local_query_processor
self.live_processor = live_search_processor
self.config = config or {}
self.logger = logging.getLogger(__name__)
# 🎯 Routing configuration
self.enable_hybrid_search = self.config.get("enable_hybrid_search", True)
self.local_weight = self.config.get("local_weight", 0.6)
self.live_weight = self.config.get("live_weight", 0.4)
self.confidence_threshold = self.config.get("confidence_threshold", 0.5)
self.max_hybrid_results = self.config.get("max_hybrid_results", 10)
# πŸ“Š Analytics and caching
self.routing_history = []
self.routing_cache = {}
# πŸ” Query classification patterns
self._init_classification_patterns()
self.logger.info("QueryRouter initialized with intelligent routing")
def _init_classification_patterns(self):
"""Initialize patterns for query classification."""
self.temporal_keywords = {
"current",
"latest",
"recent",
"today",
"now",
"2025",
"breaking",
"news",
"update",
"trending",
"happening",
}
self.factual_keywords = {
"what is",
"who is",
"when did",
"where is",
"statistics",
"data",
"facts",
"numbers",
"rate",
"percentage",
}
self.procedural_keywords = {
"how to",
"steps",
"guide",
"tutorial",
"instructions",
"process",
"method",
"way to",
"procedure",
}
self.conceptual_keywords = {
"explain",
"definition",
"meaning",
"concept",
"theory",
"principle",
"idea",
"understand",
"clarify",
}
def route_query(
self,
query: str,
use_live_search: bool = False,
max_results: int = 5,
search_options: Optional[Dict[str, Any]] = None,
search_mode: str = "auto",
) -> Dict[str, Any]:
"""
Route query to appropriate search method(s) with enhanced control.
Args:
query: User query string
use_live_search: Enable live search (will use hybrid approach)
max_results: Maximum results to return
search_options: Additional search options
search_mode: Search mode - "auto", "local_only", "live_only", "hybrid"
Returns:
Dictionary with routed results and metadata
"""
if not query or not query.strip():
return {
"query": query,
"results": [],
"routing_decision": "error",
"error": "Empty query provided",
}
self.logger.info(f" Routing query: {query[:100]}...")
start_time = time.time()
try:
# 🎯 Classify query type
query_type = self._classify_query(query)
# πŸ”„ Make routing decision with enhanced logic
routing_decision = self._make_enhanced_routing_decision(
query, query_type, use_live_search, search_mode
)
# πŸš€ Execute search based on routing decision
if routing_decision == "local_only":
result = self._search_local_only(query, max_results)
elif routing_decision == "live_only":
result = self._search_live_only(query, max_results, search_options)
elif routing_decision == "hybrid":
result = self._search_hybrid(query, max_results, search_options)
else:
result = self._search_fallback(query, max_results)
# πŸ“Š Add routing metadata
result.update(
{
"query_type": query_type.value,
"routing_decision": routing_decision,
"processing_time": time.time() - start_time,
"timestamp": datetime.now(),
}
)
# πŸ“ˆ Track routing decision
self._track_routing_decision(query, query_type, routing_decision)
self.logger.info(
f" Query routed via {routing_decision} in {result['processing_time']:.2f}s"
)
return result
except Exception as e:
self.logger.error(f" Error in query routing: {str(e)}")
return {
"query": query,
"results": [],
"routing_decision": "error",
"error": str(e),
"processing_time": time.time() - start_time,
}
def _classify_query(self, query: str) -> QueryType:
"""
Classify query type for routing decisions.
Args:
query: Query string to classify
Returns:
QueryType enum value
"""
query_lower = query.lower()
# πŸ” Check for temporal indicators
if any(keyword in query_lower for keyword in self.temporal_keywords):
return QueryType.TEMPORAL
# πŸ“Š Check for factual queries
if any(keyword in query_lower for keyword in self.factual_keywords):
return QueryType.FACTUAL
# πŸ”§ Check for procedural queries
if any(keyword in query_lower for keyword in self.procedural_keywords):
return QueryType.PROCEDURAL
# πŸ’‘ Check for conceptual queries
if any(keyword in query_lower for keyword in self.conceptual_keywords):
return QueryType.CONCEPTUAL
# πŸ“ˆ Default to analytical for complex queries
if len(query.split()) > 10:
return QueryType.ANALYTICAL
# πŸ”„ Default to hybrid for uncertain cases
return QueryType.HYBRID
def _make_routing_decision(
self, query: str, query_type: QueryType, force_live: bool
) -> str:
"""
Make intelligent routing decision based on query analysis.
Args:
query: Query string
query_type: Classified query type
force_live: Whether to enable live search (not force only live)
Returns:
Routing decision string
"""
# πŸ”„ Smart hybrid approach when live search is enabled
if force_live:
# ✨ Instead of live_only, use hybrid to combine both sources
if query_type == QueryType.TEMPORAL:
return "hybrid" # ⏰ Time-sensitive + stored context
else:
return "hybrid" # 🎯 Always combine live + stored data
# 🎯 Route based on query type (when live search is disabled)
if query_type == QueryType.TEMPORAL:
return "local_only" # ⏰ Only stored data when live disabled
elif query_type == QueryType.FACTUAL:
return "local_only" # πŸ“Š Facts from stored documents
elif query_type == QueryType.PROCEDURAL:
return "local_only" # πŸ”§ Procedures likely in documents
elif query_type == QueryType.CONCEPTUAL:
return "local_only" # πŸ’‘ Concepts likely in documents
elif query_type == QueryType.ANALYTICAL:
return "local_only" # πŸ“ˆ Analysis from stored data
else: # QueryType.HYBRID
return "local_only" # πŸ”„ Default to local when live disabled
def _make_enhanced_routing_decision(
self, query: str, query_type: QueryType, use_live_search: bool, search_mode: str
) -> str:
"""
Enhanced routing decision with explicit search mode control.
Args:
query: Query string
query_type: Classified query type
use_live_search: Whether live search is enabled
search_mode: Explicit search mode preference
Returns:
Routing decision string
"""
# 🎯 Explicit mode override - user ka choice priority
if search_mode == "local_only":
return "local_only"
elif search_mode == "live_only":
return "live_only" if self.live_processor.is_enabled() else "local_only"
elif search_mode == "hybrid":
return "hybrid" if self.live_processor.is_enabled() else "local_only"
# 🧠 Auto mode - intelligent decision making
elif search_mode == "auto":
return self._make_routing_decision(query, query_type, use_live_search)
# πŸ”„ Fallback to original logic
else:
return self._make_routing_decision(query, query_type, use_live_search)
def _search_local_only(self, query: str, max_results: int) -> Dict[str, Any]:
"""Search only local documents."""
self.logger.info(" Searching local documents only")
try:
local_result = self.local_processor.process_query(query)
# πŸ”„ Format results consistently
formatted_results = []
for item in local_result.get("context", [])[:max_results]:
formatted_results.append(
{
"title": f"Document: {item.get('source', 'Unknown')}",
"content": item.get("text", ""),
"score": item.get("score", 0.0),
"source": item.get("source", "local_document"),
"type": "local_document",
"metadata": item.get("metadata", {}),
}
)
return {
"query": query,
"results": formatted_results,
"total_results": len(formatted_results),
"sources": ["local_documents"],
"local_results": local_result.get("total_results", 0),
}
except Exception as e:
self.logger.error(f" Local search error: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"Local search failed: {str(e)}",
}
def _search_live_only(
self, query: str, max_results: int, search_options: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
"""Search only live web sources."""
self.logger.info(" Searching live web sources only")
try:
# 🎯 Extract search options
options = search_options or {}
search_depth = options.get("search_depth", "basic")
time_range = options.get("time_range", "month")
live_result = self.live_processor.search_web(
query,
max_results=max_results,
search_depth=search_depth,
time_range=time_range,
)
return {
"query": query,
"results": live_result.get("results", []),
"total_results": live_result.get("total_results", 0),
"sources": ["live_web"],
"live_results": live_result.get("total_results", 0),
"search_params": live_result.get("search_params", {}),
}
except Exception as e:
self.logger.error(f" Live search error: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"Live search failed: {str(e)}",
}
def _search_hybrid(
self, query: str, max_results: int, search_options: Optional[Dict[str, Any]]
) -> Dict[str, Any]:
"""Perform hybrid search combining local and live sources."""
self.logger.info(" Performing hybrid search")
try:
# πŸ“Š Calculate result distribution
local_count = int(max_results * self.local_weight)
live_count = max_results - local_count
# πŸš€ Perform both searches concurrently (simplified sequential for now)
local_result = self.local_processor.process_query(query)
options = search_options or {}
live_result = self.live_processor.search_web(
query,
max_results=live_count,
search_depth=options.get("search_depth", "basic"),
time_range=options.get("time_range", "month"),
)
# πŸ”„ Combine and rank results
combined_results = self._fuse_results(
local_result, live_result, local_count, live_count
)
return {
"query": query,
"results": combined_results[:max_results],
"total_results": len(combined_results),
"sources": ["local_documents", "live_web"],
"local_results": local_result.get("total_results", 0),
"live_results": live_result.get("total_results", 0),
"fusion_method": "weighted_ranking",
}
except Exception as e:
self.logger.error(f" Hybrid search error: {str(e)}")
return self._search_fallback(query, max_results)
def _fuse_results(
self,
local_result: Dict[str, Any],
live_result: Dict[str, Any],
local_count: int,
live_count: int,
) -> List[Dict[str, Any]]:
"""
Fuse results from local and live searches.
Args:
local_result: Results from local search
live_result: Results from live search
local_count: Number of local results to include
live_count: Number of live results to include
Returns:
Fused and ranked results
"""
fused_results = []
# πŸ“š Process local results
for item in local_result.get("context", [])[:local_count]:
fused_results.append(
{
"title": f"Document: {item.get('source', 'Unknown')}",
"content": item.get("text", ""),
"score": item.get("score", 0.0) * self.local_weight,
"source": item.get("source", "local_document"),
"type": "local_document",
"metadata": item.get("metadata", {}),
"fusion_score": item.get("score", 0.0) * self.local_weight,
}
)
# 🌐 Process live results
for item in live_result.get("results", [])[:live_count]:
fused_results.append(
{
"title": item.get("title", "Web Result"),
"content": item.get("content", ""),
"score": item.get("relevance_score", 0.0) * self.live_weight,
"source": item.get("url", "web_search"),
"type": "web_result",
"metadata": item.get("metadata", {}),
"fusion_score": item.get("relevance_score", 0.0) * self.live_weight,
}
)
# πŸ”„ Sort by fusion score
fused_results.sort(key=lambda x: x.get("fusion_score", 0), reverse=True)
return fused_results
def _search_fallback(self, query: str, max_results: int) -> Dict[str, Any]:
"""Fallback search method when other methods fail."""
self.logger.warning(" Using fallback search method")
try:
# πŸ“š Try local search first
local_result = self.local_processor.process_query(query)
if local_result.get("context"):
return self._search_local_only(query, max_results)
else:
return {
"query": query,
"results": [],
"total_results": 0,
"sources": [],
"error": "No results found in fallback search",
}
except Exception as e:
self.logger.error(f" Fallback search failed: {str(e)}")
return {
"query": query,
"results": [],
"total_results": 0,
"error": f"All search methods failed: {str(e)}",
}
def _track_routing_decision(
self, query: str, query_type: QueryType, routing_decision: str
):
"""Track routing decisions for analytics."""
self.routing_history.append(
{
"query": query[:100], # Truncate for privacy
"query_type": query_type.value,
"routing_decision": routing_decision,
"timestamp": datetime.now(),
}
)
# πŸ“Š Keep only last 100 routing decisions
if len(self.routing_history) > 100:
self.routing_history = self.routing_history[-100:]
def get_routing_analytics(self) -> Dict[str, Any]:
"""
Get analytics about routing patterns.
Returns:
Dictionary with routing analytics
"""
if not self.routing_history:
return {
"total_queries": 0,
"routing_distribution": {},
"query_type_distribution": {},
}
total_queries = len(self.routing_history)
# πŸ“Š Calculate routing distribution
routing_counts = {}
query_type_counts = {}
for entry in self.routing_history:
routing = entry["routing_decision"]
query_type = entry["query_type"]
routing_counts[routing] = routing_counts.get(routing, 0) + 1
query_type_counts[query_type] = query_type_counts.get(query_type, 0) + 1
# πŸ“ˆ Convert to percentages
routing_distribution = {
k: round((v / total_queries) * 100, 1) for k, v in routing_counts.items()
}
query_type_distribution = {
k: round((v / total_queries) * 100, 1) for k, v in query_type_counts.items()
}
return {
"total_queries": total_queries,
"routing_distribution": routing_distribution,
"query_type_distribution": query_type_distribution,
"recent_decisions": [
{
"query": entry["query"][:50] + "...",
"type": entry["query_type"],
"routing": entry["routing_decision"],
}
for entry in self.routing_history[-5:]
],
}
def clear_cache(self):
"""Clear routing cache."""
self.routing_cache.clear()
self.logger.info(" Routing cache cleared")
def clear_history(self):
"""Clear routing history."""
self.routing_history.clear()
self.logger.info(" Routing history cleared")